

Лабораторная работа №3

Общий ядерный практикум Физического факультета МГУ. Версия 2.0, октябрь 2017

β-распад. Измерение спектра электронов β-распада

В лабораторной работе изучается явление β-распада ядер, измеряется энергетический спектр электронов β-распада ядер с помощью спектрометра на основе полупроводникового детектора и определяется максимальная энергия β-спектра.

- 1. Введение
- 2. Экспериментальная установка
- 3. Порядок выполнения работы
- 4. Общие сведения о β-распаде
- **5.** Теория β-распада
- 6. График Ферми-Кюри
- 7. Полупроводниковые детекторы
- 8. Контрольные вопросы и задачи
- 9. Приложения

1. Введение

Бета-распад - спонтанное превращение ядра (A,Z) в ядро (A,Z<u>+</u>1) в результате испускания лептонов (электрон и антинейтрино, позитрон и нейтрино), либо поглощения электрона атомной оболочки с испусканием нейтрино (е-захват).

В процессе β^{-} - распада происходит превращение одного из нейтронов ядра в протон:

 $n \rightarrow p + e^- + \widetilde{\nu}_e$ β^- - распад

В процессах β⁺ - распада и е - захвата происходит превращение одного из протонов ядра в нейтрон:

 $p \rightarrow n + e^+ + \nu_e \quad \beta^+$ - распад $p + e^- \rightarrow n + \nu_e \quad e$ – захват

Т. к. масса ядра много больше масс лептонов - энергия отдачи ядра мала и выделяющуюся в результате β - распада энергию в основном уносят лептоны (электрон, электронное антинейтрино, позитрон, электронное нейтрино).

При β⁻ и β⁺ - распадах образуется 3 частицы: ядро и два лептона. Вылет частиц возможен в разных направлениях и они могут иметь разные импульсы поэтому спектры энергий частиц являются непрерывными.

При е-захвате в конечном состоянии образуется 2 частицы: ядро и электронное нейтрино. Т. к. объектов всего два - они имеют одинаковый импульс и разлетаются в противоположных направлениях - распределение кинетической энергии является однозначным и спектр энергий нейтрино дискретным.

β-распад происходит в результате слабого взаимодействия. Периоды

полураспада β -активных ядер заключены в интервале 0,1 с - 10¹⁷ лет. То, что β распад может происходить за времена значительно большие, чем α -распад, объясняется большой разницей в интенсивности слабых и ядерных взаимодействий. На малую интенсивность слабых взаимодействий указывает также большое время жизни нейтрона. γ -переходы в ядрах со сравнимой энергией, обусловленные электромагнитным взаимодействием, происходят в среднем за 10⁻¹² с.

Энергии, выделяющиеся при β-распаде, заключены в интервале от 18,61 кэВ для трития

$$_{1}^{3}H \rightarrow _{2}^{3}He + e^{-} + \widetilde{v}_{e}$$

до 13,4 МэВ для тяжелого изотопа бора ${}^{12}{}_5$ В:

$${}^{12}_{5}B \rightarrow {}^{12}_{6}C + e^- + \widetilde{\nu}_e$$

В результате β - распада конечное ядро может образовываться как в основном состоянии (E = 0), так и в одном из возбужденных состояний (E > 0).

2. Экспериментальная установка

Для спектрометрии электронов в лабораторной работе используется кремниевый полупроводниковый детектор, изготовленный методом дрейфа лития, с толщиной чувствительной области около 2 мм. С помощью такого детектора можно исследовать β-спектры с максимальной энергией вплоть до 1 МэВ (пробег электронов с энергией 1 МэВ в кремнии равен 1,6 мм).

рис. 1: Блок-схема экспериментальной установки

изображена Блок-схема установки на рис. 1. β-источники И полупроводниковый детектор располагаются в дискообразной металлической детектора Сигналы проходят через зарядочувствительный камере. с предусилитель, усилитель и поступают на вход многоканального амплитудного анализатора импульсов. Информацию о распределении импульсов с детектора по амплитудам можно наблюдать на экране дисплея. Помещая между β-источником и детектором алюминиевые поглотители различной толщины, можно снять кривую поглощения излучения и определить максимальную энергию электронов методом поглощения.

На рис. 2 отдельно изображена камера с детектором, β-источниками и алюминиевыми поглотителями (показан боковой разрез камеры). На вращающемся диске 4 расположены β-источники.

рис. 2: Устройство камеры с полупроводниковым детектором, βисточниками и алюминиевыми поглотителями: 1 – полупроводниковый детектор; 2 - β-источник; 3 - диск, на котором расположены алюминиевые поглотители; 4 - диск с β-источниками; 5 - алюминиевый поглотитель; 6 - ручка смены βисточников; 7 - ручка смены поглотителей; 8 - свинцовая защита; 9 - корпус; 10 втулка

β - источники поочередно устанавливаются напротив детектора 1 с помощью ручки 6. На диске 3 расположены алюминиевые поглотители различной толщины. На этом же диске есть отверстие без поглотителя для измерения β-спектра. Для перемещения поглотителей используется ручка 7. На верхней крышке камеры имеются обозначения, показывающие, какой β-источник и какой поглотитель установлен против полупроводникового детектора.

3. Порядок выполнения работы

В работе измеряются β -спектры ⁸⁵₃₆Кr (криптон) и/или ²⁰⁴₈₁Tl (таллий).

рис. 3: β-спектры ⁸⁵₃₆Кг и ²⁰⁴₈₁Т1

Их β-спектры показаны на рис. 3. Они отвечают запрещённым β-переходам 1-го порядка и имеют максимальные энергии электронов соответственно 672 и 763 кэВ.

Для калибровки (градуировки) β-спектрометра по энергии используются два источника конверсионных электронов — метастабильные состояния (долгоживущие возбужденные состояния, или изомеры) ядер ^{137m}₅₆Ba и ^{207m}₈₂Pb. Испускание конверсионного электрона (электрона внутренней конверсии) является одним из двух конкурирующих процессов перехода ядра из возбуждённого в основное состояние (другим процессом является испускание у-кванта). Энергия возбуждения ядра Е в процессе внутренней конверсии непосредственно передается одному из электронов внутренней атомной Энергетический оболочки. который испускается атома. ИЗ спектр конверсионных электронов является дискретным, т. е. содержат отдельные линии, отвечающие выбиванию электронов из различных оболочек (K, L, M, до незначительной энергии отдачи атома энергии ...). С точностью конверсионных электронов равны E - E_K, E - E_L, E - E_M, и т.д., где E_K, E_L, E_Mэнергии связи электрона на соответствующих атомных оболочках. В спектре конверсионных электронов ²⁰⁷₈₂Pb выделяются линии с энергиями 976 и 1048 кэВ, отвечающие испусканию электронов из К и L оболочек соответственно (рис. 4), а в спектре ¹³⁷₅₆Ва - линия 624 кэВ, отвечающие испусканию электронов из К-оболочки (рис. 5)

рис. 4: Энергетические спектры конверсионных электронов $^{207m}_{82}$ Pb, полученные с помощью полупроводникового спектрометра. К, L — испускание электронов с K, L-оболочек. $^{207m}_{82}$ Pb образуется при β -распаде $^{207}_{93}$ Bi.

Рис. 5: Энергетические спектры конверсионных электронов ${}^{137m}{}_{56}$ Ва (T_{1/2}=2,55 мин), полученные с помощью полупроводникового спектрометра. К — испускание электрона с К-оболочки, L — испускание электрона с L-оболочки. ${}^{137m}{}_{56}$ Ва образуется при β -распаде ${}^{137}{}_{55}$ Сѕ и его конверсионные электроны регистрируются вместе с электронами β -распада ${}^{137}{}_{55}$ Сѕ

Упражнение 1. Градуировка β-спектрометра

Проградуировать β -спектрометр. Для этого с помощью многоканального амплитудного анализатора поочередно измеряются энергетические спектры конверсионных электронов ^{137m}₅₆Ba и ^{207m}₈₂Pb. По хорошо выделяющимся линиям с энергиями 624 кэB в спектре ^{137m}₅₆Ba и 976 и 1048 кэB в спектре ^{207m}₈₂Pb строится градуировочная зависимость энергии электронов от номера канала амплитудного анализатора. Необходимо оценить точность градуировки и энергетического разрешения спектрометра.

Упражнение 2. Измерение β-спектров ⁸⁵₃₆Kr и ²⁰⁴₈₁Tl.

Измерить β-спектры ${}^{85}_{36}$ Kr и ${}^{204}_{81}$ Tl. Представить эти данные в виде графиков Ферми-Кюри. Значения функции F(E, Z) приведены в Таблице №1 в Приложении.

Для уменьшения времени обработки производится суммирование информации в нескольких (например, пяти) соседних каналах амплитудного анализатора и результат рассматривается как одна точка с энергией среднего канала. Для этих точек и производится вычисление функции Ферми-Кюри $Y(E_e, E_\beta)$. Примеры графиков Ферми-Кюри для β -источников ${}^{85}_{36}$ Kr и ${}^{204}_{81}$ Tl, полученные с помощью полупроводникового спектрометра, приведены на рис. 6.

рис. 6: График Ферми-Кюри β -спектров ${}^{85}_{36}$ Kr и ${}^{204}_{81}$ Tl, измеренных с помощью полупроводникового спектрометра

При построении этих графиков надо иметь в виду, что при малых энергиях (ниже 200-300 кэВ) происходит искажение результатов из-за конечной толщины β -источника, обратного рассеяния электронов в полупроводниковом детекторе и фона рентгеновского излучения, возникающего от торможения электронов в веществе. При энергиях, близких к верхней границе β-спектра, где число отсчетов мало, спектр деформируется из-за конечного временного разрешения спектрометра ($\tau_{cn} \approx 10^{-6}$ с). Электроны от β -источника, попадающие на детектор в течение временного интервала τ_{cn} , регистрируются как одна частица с энергией, равной сумме энергий отдельных электронов. Это приводит соответствующих возникновению сигналов, энергии регистрируемых К электронов даже выше максимальной энергии β-спектра. Функция Ферми-Кюри поэтому вблизи конца β-спектра отклоняется от прямой линии вверх. Учитывая всё вышесказанное, при проведении прямой линии для определения максимальной энергии β-спектра рекомендуется исключить начальный участок (ниже 200-300 кэВ) и последние точки спектра (выше 600-650 кэВ). Построив графики Ферми-Кюри изотопов ⁸⁵₃₆Kr и ²⁰⁴₈₁Tl, определить максимальные энергии электронов β-спектров этих изотопов.

Упражнение 3. Измерение верхней границы β-спектра методом поглощения

Помещая β-источниками И полупроводниковым между детектором алюминиевые поглотители различной толщины, измерить для ⁸⁵₃₆Kr или ²⁰⁴₈₁Tl кривую поглощения β-излучения (зависимость скорости счёта от толщины поглотителя). электронов Помимо радиоактивного источника, счётчик регистрирует фон, образованный γ-квантами от источника и от космических лучей (в основном μ -мезоны), которые проходят через свинцовую защиту. Интенсивность электронов I_{β} уменьшается с увеличением толщины поглотителя xза счёт поглощения и рассеяния приблизительно по экспоненциальному закону. Интенсивность фона Іф практически не зависит от толщины поглотителя. Поэтому на полулогарифмической зависимости полной интенсивности $I = I_{\beta} + I_{d}$ от толщины поглотителя - $\ln I(x)$ в области $I_{\beta} \gg I_{\phi}$ наблюдается прямолинейный участок. При увеличении толщины поглотителя регистрируемая интенсивность I стремится к I_{ϕ} .

Для определения экстраполированного пробега строится график зависимости логарифма интенсивности регистрируемых электронов от толщины поглотителя - ln*I*(x). Значения ln*I* откладываются с ошибками измерений.

Экстраполированный пробег R_3 находится путём аппроксимации линейного участка графика ln I(x) прямой и экстраполяцией её к линии фона. Неоднозначность аппроксимации, связанная с ошибками измерения, приводит к ошибке в определении экстраполированного пробега ΔR_3 . Толщина поглотителя также определяется с некоторой ошибкой, которую необходимо учесть. При определении пробега к полученной из экстраполяции величине следует прибавить толщину напыления на детекторе (2 мкм золота), а также среднюю толщину слоя плёнки, предохраняющей препарат от осыпания.

Эмпирические формулы связи экстраполированного пробега в г/см² электронов с энергией *E* (МэВ) в алюминии следующие:

Экстраполированный пробег электронов в веществе с зарядом Z и массовым числом A связан с пробегом в алюминии следующим образом:

$$R(A,Z) = R(Al) \frac{(Z/A)_{Al}}{(Z/A)}$$

Сравнить полученные данные с результатами спектрометрических измерений. Оценить и сопоставить точности различных методов нахождения верхней границы β-спектра.

4. Общие сведения о β-распаде

Атомные ядра могут самопроизвольно испускать лептоны (электроны, позитроны, нейтрино и антинейтрино). Эти процессы называются β -распадом. При β -распаде массовое число ядра (число нуклонов А) не изменяется, а заряд его (Z) изменяется на 1. Существуют три типа β -распада: β^- -распад, β^+ -распад и езахват, т. е. захват электрона ядром с одной из ближайших к ядру оболочек атома:

$n \rightarrow p + e^- + \widetilde{V}_e$	β⁻ - распад
$p \rightarrow n + e^+ + v_e$	β^+ - распад
$p + e^- \rightarrow n + v_e$	е – захват

Здесь е и е⁺ - электрон и позитрон, V_e и \tilde{v}_e - электронное нейтрино и электронное антинейтрино.

При β -распаде происходит изменение внутреннего состояния нуклонов ядра. Совершаются следующие превращения нуклонов внутри ядра: Нейтрон распадается вышеприведенным способом также и в свободном состоянии с периодом полураспада $T_{1/2} = 11$, 7 мин. Вторая из написанных реакций может идти лишь для связанного в атомном ядре протона. Свободный протон не

может распадаться на нейтрон, позитрон и электронное нейтрино, т.к. масса протона меньше массы нейтрона. Однако, для связанного в атомном ядре протона β+-распад становится возможным.

 β -распад происходит в результате слабого взаимодействия. Периоды полураспада β -активных ядер заключены в интервале 0,1 с - 10¹⁷ лет. То, что β -распад может происходить за времена значительно большие, чем α -распад, объясняется большой разницей в интенсивности слабых и ядерных взаимодействий. На малую интенсивность слабых взаимодействий указывает также большое время жизни нейтрона. γ -переходы в ядрах со сравнимой энергией, обусловленные электромагнитным взаимодействием, происходят в среднем за 10⁻¹² с.

Рассмотрим энергетические условия β-распада. β-распад возможен, если масса системы в начальном состоянии больше её массы в конечном состоянии. Полагая массу электронного нейтрино равной нулю, энергетические условия β-распада можно записать в следующем виде:

$M(Z, A) > M(Z + 1, A) + m_e$	$(\beta^{-}$ - распад),
$M(Z, A) > M(Z-1, A) + m_e$	$(\beta^+$ - распад),
$M(Z, A) + m_e > M(Z-1, A)$	(Е - захват).

где m_e - масса электрона, M(Z, A) - масса ядра с атомным номером Z и массовым числом A. Однако, в таблицах масс, получаемых методами массспектрометрии, приводятся не массы ядер, а массы нейтральных атомов. Пользуясь очевидным равенством (справедливым с точностью до энергии связи электрона в атомах) $M(Z, A) = M^{ar}(Z,A) + Zm_e$, получим энергетические условия β -распада, выраженные через массы нейтральных атомов

$M^{ m ar}(Z, A) > M^{aT}(Z + 1, A)$	<i>(β</i> ⁻ - распад),
$M^{\text{at}}(Z, A) > M^{aT}(Z-1, A) + 2m_e$	$(\beta^+$ - распад),
$M^{\operatorname{at}}(Z,A) > M^{aT}(Z-I,A)$	(Е -захват).

Из этих условий следует, что все β⁺-активные ядра должны одновременно испытывать и Е-захват.

В отличие от α -распада, который возможен лишь для ядер с A > 140 (Z > 60), ядра, испытывающие β -распад, расположены по всей периодической системе элементов. Определим области значений A и Z ядер, имеющих тот или иной тип β -активности. Воспользуемся полуэмпирической формулой Вайцзеккера для энергий связи ядер

$$E_{cs} = a_1 A - a_2 A^{\frac{2}{3}} - a_3 \frac{Z^2}{A^{\frac{1}{3}}} - a_4 \frac{(A - 2Z)^2}{A} + a_5 \frac{\delta}{A^{\frac{3}{4}}}$$

$$a_1 = 15,8 \text{ M} \Rightarrow B, \ a_2 = 17,8 \text{ M} \Rightarrow B, \ a_3 = 0,7 \text{ M} \Rightarrow B, \ a_4 = 23,7 \text{ M} \Rightarrow B, \ a_5 = 34 \text{ M} \Rightarrow B.$$

В этом соотношении первый член представляет собой объёмную энергию ядра, второй - поверхностную, третий - кулоновскую. Четвёртый член отражает свойство симметрии n-p-взаимодействий. Пятый - учитывает эффект чётности

Массовое число A при β -распаде не изменяется, в то время как Z изменяется на 1. Поэтому первые два члена в формуле не влияют на β -распад. Можно показать, что и последний член тоже не является существенным. Наиболее важны для β -распада третий и четвёртый члены. Равновесное число протонов и нейтронов в ядре (при фиксированном A) определяется минимумом по Z суммы третьего и четвёртого членов. Легко показать, что этот минимум имеет место при

$$Z_{page} = \frac{2a_4A}{a_3A^{\frac{2}{3}} + 4a_4} \approx \frac{A}{0,015A^{\frac{2}{3}} + 2}$$

При $Z < Z_{\text{равн}}$ ядро испытывает β^- -распад, а при $Z > Z_{\text{равн}}$ - β +-распад и езахват. При всех А β -стабильные ядра должны группироваться вокруг значений $Z_{\text{равн}}$ (рис. 7). Из формулы видно, что при малых А $Z_{\text{равн}} \approx A/2$, т. е. лёгкие ядра должны иметь примерно одинаковое количество протонов и нейтронов (роль кулоновской энергии мала). С ростом A роль кулоновской энергии увеличивается и количество нейтронов в устойчивых ядрах начинает превышать количество протонов.

В результате β[±]-распада образуются три частицы: конечное ядро и пара

рис. 7: *N-Z* диаграмма атомных ядер

лептонов. Энергия, сообщаемая ядру, в силу его большой массы мала и ею можно пренебречь. Поэтому кинетическая энергия E_{β} ±, выделяющаяся при β^{\pm} -распаде и равная

$$E_{\beta\pm} = \left[M(Z,A) - M(Z \mp 1,A) - m_e \right] c^2$$
⁽¹⁾

практически целиком уносится парой лептонов, причём распределение энергий между ними может быть любым. Таким образом, энергетический спектр позитронов (электронов) и нейтрино (антинейтрино) должен быть непрерывным в интервале от 0 до $E_{\beta} \pm$ (см. рис. 8).В случае е-захвата ядром

орбитального электрона в конечном состоянии образуются две частицы: конечное ядро и нейтрино. Распределение энергий между ними поэтому является однозначным, практически вся она $[M(Z, A) - M(Z - 1, A + m_e]c^2$ уносится нейтрино. Таким образом, спектр нейтрино при е-захвате при фиксированных состояниях начального и конечного ядра в отличие от β^{\pm} -распада будет монохроматическим.

рис. 8: Энергетический спектр электронов β-распада

В е-захвате участвуют главным образом электроны ближайших к ядру оболочек (прежде всего К-оболочки), так как для электронов К-оболочки вероятность перекрытия волновых функций электрона и ядра наибольшая.

Характерной β-распада чертой всех видов является испускание электронного нейтрино или электронного антинейтрино. Впервые гипотеза о существовании нейтрино была выдвинута Паули в 1930 г. для объяснения непрерывного характера спектра β[±]-распада. В настоящее время существование нейтрино (антинейтрино) доказано. Масса нейтрино либо равна нулю, либо весьма незначительно отличается от нуля (о чем свидетельствуют измерения нейтринных осцилляций) Спин нейтрино (антинейтрино) равен 1/2 (в единицах постоянной Планка ћ). Нейтрино и антинейтрино отличаются знаками поляризации: у нейтрино спин антипараллелен направлению движения (левый винт), у антинейтрино - параллелен направлению движения (правый винт).

представлениям По современным нейтрино участвует не В электромагнитных взаимодействиях и поэтому не ионизирует атомов среды. Нейтрино и антинейтрино - частицы, которые участвуют только в процессах, относящихся к типу слабых взаимодействий. Поэтому эффективное сечение взаимодействия нейтрино с энергией < 10 МэВ с веществом чрезвычайно мало $(\sigma < 10^{-43} \text{ см}^2)$, что соответствует длине свободного пробега в твёрдой среде в несколько тысяч световых лет. Отсюда понятно, почему для прямого детектирования нейтрино потребовалось много лет кропотливых опытов. Только в 1956 г. Коуэну и Райнесу удалось экспериментально наблюдать взаимодействие антинейтрино с веществом.

В силу чрезвычайной малости сечения взаимодействия нейтрино (антинейтрино) с веществом, для их регистрации необходимы большие потоки нейтрино, большие объёмы вещества, в котором происходят взаимодействия, и большое время измерения. В частности для регистрации нейтрино в опытах Коуэна и Райнеса была использована реакция $\widetilde{v}_{e} + p \rightarrow e^{+} + n$

В качестве источника антинейтрино был использован атомный реактор. Образующиеся в реакторе продукты (осколки) деления как правило β^- -активны. В результате β -распада осколков образуется большое количество антинейтрино, которые регистрируются с помощью указанной выше реакции. Этими учёными впервые была дана оценка эффективного сечения взаимодействия антинейтрино с протоном ядра($\sigma \sim 10^{-43}$ см²).

5. Теория β-распада

Основы теории слабых взаимодействий и β-распада были заложены Ферми эта теория была обобщена в универсальную 1934 г. К 1958 г. В слабых взаимодействий, четырёхфермионную теорию согласно которой элементарный процесс слабого взаимодействия представляет собой локальное взаимодействие четырёх фермионов, т.е. частиц с полуцелыми спинами. Графическое изображение локального слабого взаимодействия представлено на рис. 3.9(a) на примере диаграммы распада нейтрона. Буквой G обозначена слабого четырёхфермионного взаимодействия. константа Из экспериментальных данных $G = 1,16635 \cdot 10^{-5} \ \Gamma \Rightarrow B^{-2}$.

рис. 9: Диаграммы распада нейтрона в теории Ферми (а) и в теории электрослабого взаимодействия (б)

В настоящее время процессы как слабого, так и электромагнитного взаимодействия находят объяснение в новой теории - объединённой теории электрослабых взаимодействий. Слабое взаимодействие осуществляется путем обмена виртуальными промежуточными бозонами W^{\pm} и Z. Графическое изображение такого процесса на примере распада нейтрона показано на рис. 96, где W^{-} - промежуточный бозон. Промежуточные бозоны были открыты в 1983 г. Они имеют большие массы: $M_W = 80$ ГэВ, $M_Z = 91$ ГэВ. Отсюда для радиуса слабых сил $r_{cл}$ из соотношения неопределённости получаем очень малую величину

$$r_{ca} \approx \frac{\hbar}{M_{W,Z}} \approx 2 \cdot 10^{-3} \phi_{M}$$

Малая величина слабых сил позволяет для получения вероятности β-распада использовать квантовомеханическую теорию возмущений. Согласно этой теории

$$w = \frac{2\pi}{\hbar} \left| \int \psi_{f}^{*} V_{\beta} \psi_{i} d\mathbf{r} \right|^{2} \rho(E_{e})$$

Где V_β - гамильтониан взаимодействия между нуклонами и электроннонейтринным полем, ψ_i и ψ_f - волновые функции начального и конечного состояний системы, $\rho(E_e)$ - число конечных состояний на единичный интервал энергии, называемое статистическим множителем.

Ниже для определённости будем говорить о β^- -распаде, когда ядро испускает электрон и антинейтрино. В этом случае в начальном состоянии существует ядро, описываемое волновой функцией φ_i , а в конечном - ядро, электрон и антинейтрино, описываемые волновыми функциями φ_f , φ_e , $\varphi_{\overline{v}_e}$. Считая, что конечное ядро, электрон и антинейтрино не взаимодействуют друг с другом, получаем следующее выражение для волновой функции конечного состояния системы:

$$\psi_f = \varphi_f \varphi_e \varphi_{\tilde{v}_e}$$

При этом матричный элемент β-распада имеет вид

$$M_{if} = \int \varphi_f^* \varphi_e^* \varphi_{\tilde{v}_e}^* V_\beta \varphi_i d\mathbf{r}$$

Для вычисления матричного элемента необходимо выполнить интегрирование по объёму ядра. В первом приближении этот матричный элемент можно заменить следующим (предположение Ферми):

$$M_{if} = G \int \varphi_f^* \varphi_e^* \varphi_{\tilde{v}_e}^* \varphi_i d\mathbf{r}$$

Если пренебречь взаимодействием электрона и антинейтрино с окружающими частицами, то в качестве их волновых функций можно выбрать плоские волны:

$$\varphi_{e} = \exp\left(i\frac{\mathbf{p}_{e}}{\hbar}\mathbf{r}\right) \qquad \qquad \varphi_{\bar{v}_{e}} = \exp\left(i\frac{\mathbf{p}_{\bar{v}_{e}}}{\hbar}\mathbf{r}\right)$$

где $P_{\tilde{v}_e}$ и р_е - импульсы антинейтрино и электрона.

Можно показать, что для статистического множителя $\rho(E)$ справедливо следующее выражение:

$$\rho(E_{e}) = \frac{1}{(2\pi\hbar)^{6} c^{5}} p_{e} (E_{e} + m_{e} c^{2}) (E_{\beta} - E_{e})^{2} d\Omega_{e} d\Omega_{v_{e}}$$

где

$$p_{e} = \frac{\sqrt{E_{e}(E_{e} + 2m_{e}c^{2})}}{c}$$

импульс электрона, а $d\Omega_{e}$ и $d\Omega_{\tilde{v}_{e}}$ - элементы телесных углов вылета электрона и антинейтрино.

Подставляя эти соотношения в выражение для *w* и интегрируя по всем направлениям вылета электрона и антинейтрино получим следующую формулу для распределения числа электронов в зависимости от их энергии:

$$N_{e}(E_{e}) = \frac{G^{2}}{2\pi^{3}\hbar^{7}c^{5}} |M_{ij}|^{2} p_{e}(E_{e} + m_{e}c^{2})(E_{\beta} - E_{e})^{2}$$

Необходимо иметь в виду, что β -спектр искажается кулоновским полем атома, которое складывается из поля ядра и электронной оболочки. Поэтому в это выражение необходимо добавить множитель F(E_e,Z), который определяется как отношение вероятности нахождения электрона в некоторой точке с учётом поля атома (Z = 0) к вероятности без учёта поля (Z = 0). Искажение, вносимое в β спектр кулоновским полем атома, особенно существенно в начале спектра, т.е. для частиц с малой энергией. При этом центр тяжести кривой распределения смещается в сторону малых энергий для электронов и больших энергий для позитронов (рис. 10). Это смещение тем больше, чем больше заряд ядра.

Рис. 10а: Влияние заряда ядра и электронной оболочки на форму β-спектра (пунктир).

 $N_e(E_e)$ Соотношение было получено В масса нейтрино равна 0. В предположении, ЧТО этом случае В высокоэнергетической части спектра электронов dN_e/dE_e→0. С учетом m_v≠0 в высокоэнергетической части спектра электронов $dN_e/dE_e \rightarrow \infty$.

Рис. 106 Конец спектра электронов бетараспада при нулевой и ненулевой массе нейтрино

Полная вероятность β -распада ядра в единицу времени λ_{β} , т.е. величина, обратная среднему времени жизни ядра по отношению к β -распаду τ_{β} , получается интегрированием последнего соотношения с учетом поправки F(E_e,Z). Для ультрарелятивистских электронов $E_e^{>>}m_ec^2$, имеем

$$\lambda_{\beta} = \frac{1}{\tau_{\beta}} \sim \int_{0}^{E_{\beta}} E^{2} (E_{m} - E)^{2} dE \sim E_{\beta}^{5}$$

Характерные импульсы лептонов при β-распаде таковы, что выполняется соотношение

$$\frac{\left|p_{e}+p_{\tilde{\nu}_{e}}\right|}{\hbar}R\approx10^{-2}\ll1$$

где R - радиус ядра. При этом экспоненты в выражениях для φ_e и $\varphi_{\bar{\nu}_e}$ мало отличаются от 1 и матричный M_{if} элемент сводится (напомним, что

интегрирование проводится по внутренней области ядра) к

 $M_{if} = G \int \varphi_f^* \varphi_i d\mathbf{r}$

т. е. к выражению, зависящему только от состояний начального и конечного ядер и не зависящему от импульсов лептонов. Форма β -спектра в этом случае определяется только статистическим множителем. Такие β -переходы (и β -спектры) называются разрешёнными, поскольку идут с наибольшей вероятностью. Если матричный элемент $M_{if} = 0$, то нужно разложить экспоненту в ряд. Степень первого члена этого ряда, который дает отличный от нуля вклад в матричный элемент, называется порядком запрещённости перехода, а сами переходы - запрещёнными, поскольку их вероятность мала по сравнению с вероятностью разрешённого перехода. Из соотношения для M_{if} следует, что вероятность β -перехода должна убывать приблизительно в 10⁴ раз при увеличении порядка запрещённости на 1. При β -распаде спин ядра меняется на величину ΔJ , равную векторной сумме спинов электрона и антинейтрино и их суммарного орбитального момента L:

$$\Delta \mathbf{J} = \mathbf{L} + \mathbf{S}_{\mu} + \mathbf{S}_{\bar{\nu}}$$

При этом суммарный спин лептонной пары может быть либо 0 (спины электрона и антинейтрино антипараллельны), либо 1 (при параллельных спинах). Переходы первого типа носят название переходов Ферми, второго типа - переходов Гамова-Теллера. Таким образом, для переходов Ферми $\Delta J = L$, для переходов Гамова-Теллера $\Delta J = L$, $L\pm 1$. Переходы Гамова-Теллера не учитываются в теория Ферми, поскольку в ней используется предположение об отсутствии взаимодействия продуктов распада, упрощающее матричный элемент М_{if}. Эти переходы описываются лишь при введении в гамильтониан слабого взаимодействия членов, изменяющих спиновые состояния частиц, т. е. членов, содержащих оператор спина *S*.

Для разрешённых переходов L = 0. В этом случае волновые функции лептонов сферически симметричны, поэтому лептоны вылетают в различных направлениях с одинаковой вероятностью. Для всех запрещённых переходов L=0. Волновые функции лептонов при этом уже не являются сферически симметричными, в силу чего вероятность их вылета в некоторых направлениях оказывается сильно подавленной. Порядок запрещённости перехода численно равен орбитальному моменту лептонной пары L.

β-распад ядра может происходить как на основной, так и на один или несколько возбуждённых уровней ядра-продукта (рис. 11). Тогда получаемый в опыте β-спектр представляет собой сумму парциальных β-спектров с различными максимальными энергиями. Ядро-продукт будет переходить в основное или более низкое возбуждённое состояние путем излучения γ-кванта.

рис. 11: Сложная схема β⁻-распада с тремя парциальными спектрами.

6. График Ферми-Кюри

Форма β -спектра с учетом кулоновской поправки F(E, Z) дается следующим выражением (см. выше):

$$N_{e}(E_{e}) = \frac{G^{2}}{2\pi^{3}\hbar^{7}c^{5}} |M_{if}|^{2} p_{e}(E_{e} + m_{e}c^{2})(E_{\beta} - E_{e})^{2}$$

Экспериментально измеренный β-спектр удобно анализировать с помощью функции Ферми-Кюри, которая определяется соотношением

$$Y(E_{e}, E_{\beta}) = \left[\frac{N_{e}(E_{e})}{cp_{e}(E_{e} + m_{e}c^{2})F(E_{e}, Z)}\right]^{1/2}$$

Функция Ферми-Кюри совпадает с

$$\frac{\left|M_{if}\right|G}{\sqrt{2\pi^{3}\hbar^{7}c^{6}}}\left(E_{\beta}-E_{e}\right)$$

и для разрешённых β -переходов (для которых M_{if} не зависит от E_e) представляет собой прямую линию, пересекающую ось энергий E_e в точке $E_e = E_\beta$. На рис. 12 в качестве примера показаны β -спектр нейтрона, являющийся разрешённым, и его график Ферми-Кюри.

рис. 12: Спектр электронов β-распада нейтрона (а) и его график Ферми-Кюри (б). Максимальная энергия β -спектра равна 0,78 МэВ.

Построение графика Ферми-Кюри существенно увеличивает точность определения максимальной энергии β-спектра. Действительно, для нахождения её из обычного β-спектра приходится ограничиваться анализом лишь тех

экспериментальных точек, которые располагаются у самой верхней границы спектра. Эти точки измерены с наименьшей статистической точностью. Кроме того, верхний участок β-спектра часто подвержен трудно учитываемым искажениям за счет фона и неидеальности характеристик измерительной аппаратуры. «Спрямление» β-спектра посредством процедуры Ферми-Кюри позволяет привлечь к определению большинство экспериментальных точек, и прежде всего точки середины β-спектра, которые измерены с наилучшей точностью. Следует отметить, что даже для неразрешённых переходов график Ферми-Кюри близок к прямой линии, т. е. определяется практически исключительно статистическим множителем. Описываемым методом легко достигается точность определения максимальной энергии β-спектра на уровне 1%.

7. Полупроводниковые детекторы

В качестве детектора в установке используется полупроводниковый кремниевый детектор. Полупроводниковые детекторы широко применяются для детектирования и спектрометрии заряженных частиц и у-квантов благодаря высокому разрешению по энергии, малому времени нарастания сигнала и малым размерам. Эти детекторы представляют собой твердотельную (кристаллическую) ионизационную камеру, в которой при поглощении ионизирующих излучений образуются носители заряда - электроны и дырки. В отличие от ионизационной камеры в полупроводниковом детекторе электроны переводятся не в непрерывный спектр, а из валентной зоны в зону проводимости.

Для полупроводниковых детекторов обычно используются кремний и германий. Кремниевые детекторы, как правило, работают при комнатной температуре. Германиевые детекторы нуждаются в охлаждении до~80 К. Для регистрации заряженных частиц используются кремниевые детекторы и детекторы из сверхчистого германия (Ge(HP)). Для регистрации γ-квантов используются германиевые детекторы. Для регистрации рентгеновского излучения – кремниевые детекторы.

Схема полупроводникового детектора представлена на рис. 13.

В полупроводниковом детекторе создается область, в которой отсутствуют свободные носители заряда – обедненная область. Заряженная частица, пролетая через обедненную (чувствительную) область детектора, производит пары электрон-дырка вдоль своей траектории. Средняя энергия, необходимая для образования одной электронно-дырочной пары, составляет 3.62 эВ для кремния при комнатной температуре и 2.95 эВ для германия при температуре 80 К. Количество электронно-дырочных пар пропорционально потерям энергии частицы. Для измерения энергии частицы, необходимо, чтобы она потеряла всю свою энергию и остановилась в чувствительной области. Под действием приложенного к детектору электрического поля, электроны движутся к аноду, а

рис. 13: Схема полупроводникового детектора. n,p-слои – области с электронной и дырочной проводимостью

дырки - к катоду. Собранные заряды образуют токовый импульс, интеграл которого несет информацию об энергии, которую частица потеряла в чувствительной области. Токовый импульс детектора поступает В зарядовочувствительный предусилитель, а затем - АЦП. АЦП генерирует число, линейно зависимое от амплитуды сигнала усилителя. Число, которое генерирует АЦП, образом пропорционально таким энергии частицы. Генерируемое АЦП число служит для адресации ячейки памяти (канале), соответствующей определенному диапазону амплитуд. Каналы последовательно нумеруются так, что большим амплитудам соответствуют большие номера каналов. По мере набора статистики в памяти компьютера формируется распределение (амплитудный спектр) - зависимость количества событий от номера канала.

Разрешение "полупроводниковый ПО энергии системы детектор предусилитель" определяется несколькими факторами: статистической точностью измерения, различными видами электрических шумов в обедненной области кристалла и во входных цепях предусилителя, флуктуациями заряда при неполном собирании и флуктуациями потерь энергии во входном окне детектора. Например, для α-частицы с энергией 5 МэВ разрешение по энергии составляет 10 - 12 кэВ, т.е. примерно 0.2%.

8. Контрольные вопросы и задачи

- 1. Показать, что β-распад нейтрона является разрешенным.
- 2. Разрешённым или запрещённым является β -распад ядра ${}^{90}_{38}$ Sr?
- 3. Какой вид имеет функция Ферми-Кюри при массе нейтрино, отличной от нуля?
- 4. Как необходимо преобразовать спектр нейтрино (антинейтрино) при βраспаде, чтобы получить для него график Ферми-Кюри?
- 5. Рассчитать максимальную энергию электронов β -распада ³² Р.
- 6. Найти максимальную энергию, уносимую электроном при распаде нейтрона. Оценить, какую энергию отдачи получает при этом протон.

- 7. Считая известной форму β-спектра электронов β-распада, построить спектр антинейтрино, излучённых в β-распаде.
- 8. Исследовать устойчивость ядра ${}^{36}_{17}$ Cl к β -распаду.
- 9. По массам соседних изобар A = 40 определить возможные типы распадов и найти энергии переходов в МэВ.
- 10. Определить максимальную энергию позитронов распада $^{27}_{14}$ Si.
- 11. Определить энергию отдачи ядра лития, образующегося в основном состоянии в результате е-захвата из ядра ⁷₄Be.
- 12. Определить энергию отдачи ядра ²²₁₀Ne, образующегося в основном состоянии из ядра ²²₁₁Na в результате е-захвата.
- 13. Вычислить верхнюю границу β-спектра распада ¹³⁷₅₅Cs, учитывая, что дочернее ядро ¹₅³₆Ba образуется в возбуждённом состоянии и энергия излучаемых им γ-квантов равна 0,67 МэВ.
- 14. По массам изобар A = 13 найти верхнюю границу β-спектра позитронов.
- 15. Оценить среднюю энергию, уносимую антинейтрино, при β-распаде ²⁰⁴₈₁Tl. Среднюю энергию электронов β-распада считать равной 1/3 E_e.

9. Приложения

Е, кэВ	²² Na*	⁸⁵ Kr**	²⁰⁴ Tl**	Е, кэВ	²² Na	⁸⁵ Kr	²⁰⁴ Tl
10	0.304	13.29	118.4	360	0.787	3.39	22.85
20	0.436	9.52	84.5	380	0.790	3.35	22.35
30	0.510	7.89	69.6	400	0.792	3.32	21.89
40	0.560	6.93	60.7	450	0.795	3.25	20.88
50	0.596	6.30	54.6	500	0.798	3.19	20.02
60	0.623	5.84	50.1	550	0.801	3.14	19.28
70	0.646	5.49	46.7	600	0.803	3.10	18.62
80	0.663	5.22	43.9	650	0.805	3.06	18.04
100	0.690	4.81	39.7	700	0.806	3.03	17.52
120	0.710	4.52	36.6	750	0.807	3.00	17.05
140	0.725	4.30	34.1	800	0.808	2.974	16.61
160	0.737	4.13	32.2	850	0.809	2.950	16.21
180	0.746	4.00	30.6	900	0.810	2.928	15.84
200	0.754	3.88	29.21	950	0.810	2.908	15.49
220	0.761	3.79	28.05	1000	0.811	2.890	15.17
240	0.766	3.70	27.03	1100	0.812	2.857	14.59

Таблица №1 Функция F(E,Z)

260	0.771	3.63	26.14	1200	0.813	2.828	14.07
280	0.775	3.57	25.34	2000	0.814	2.668	11.20
300	0.779	3.52	24.62	4000	0.817	2.443	7.71
320	0.782	3.47	23.98	10000	0.825	2.069	3.84
340	0.785	3.43	23.39				

*- позитронный излучатель,

** - электронный излучатель.

Приложение 2. Схемы распадов источников конверсионных электронов

рис. 14. Схема β -распада ядра ${}_{55}$ Cs¹³⁷ и уровни возбуждения в ядре ${}_{56}$ Ba¹³⁷

Как показано на рис. 14, 93.5 % распадов ядра ₅₅Cs¹³⁷ происходит на уровень 11/2- ядра ^{137m}₅₆Ba, время жизни которого – 2.55 мин. Такие уровни называются изомерными, а ядра находящиеся в таких долгоживущих возбужденных состояниях - изомерами.

рис. 15. Схема распада ядра ₈₃Bi²⁰⁷ в результате е-захвата (ЕС) и уровни возбуждения в ядре ₈₂Pb²⁰⁷