
Laboratory Work No. 2.

Alpha Decay. Interaction of Alpha Particles

with Matter

The purpose of this laboratory work is to study the phenomenon of α decay,

the mechanism of α particle formation, and interaction of α particles with

matter.
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1. α decay

α decay is the decay of atomic nuclei accompanied by the emission of α

particles (isotope 4He). Most α radioactive isotopes are located in the periodic

table in the region of heavy nuclei (Z > 83). This is due to the fact that α
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decay is associated with Coulomb repulsion, which increases with increasing

nuclear size faster (as Z2) than the attractive nuclear forces, which increase

linearly with the mass number A.

A necessary requirement for α decay, as any other kind of decay, comes

from the energy conservation law. The rest energy of the initial nucleus

is equal to the sum of total energies of the products, which results in the

following condition on the masses:

M(A,Z) > M(A− 4, Z − 2) +mα, (1)

where M(A,Z) and M(A − 4, Z − 2) are the masses of the initial and final

nuclei, respectively, mα is the mass of the α particle. The decay energy

released in the decay:

Qα = (M(A,Z)−M(A− 4, Z − 2)−mα)c
2, (2)

is distributed between the decay products in the form of their kinetic energies.

In most cases, the main part of the α decay energy (about 98%) is carried

away by the α particles. Using the conservation laws of energy and momentum

for the kinetic energy of the α particle Tα, the following relation can be

obtained.

Tα =
M(A− 4, Z − 2)

mα +M(A− 4, Z − 2)
Qα ≈ A− 4

A
Qα. (3)

Nuclei can also undergo α decay to excited states of the final nuclei and

from excited states of the initial nuclei. Therefore, relation (2) for the α decay

energy can be generalized as follows:

Qα = (M(A,Z)−M(A− 4, Z − 2)−mα)c
2 + E∗

i − E∗
f , (4)

where E∗
i and E∗

f are the excitation energies of the initial and final nuclei,

respectively.

An important property of α decay is that a small change in the energy of
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α particles greatly affects the half-lives, often by many orders of magnitude.

For example, for isotope 232Th, Qα = 4.08 MeV, T1/2 = 1.41 ·1010 years, while
for 218Th Qα = 9.85 MeV, T1/2 = 10 µs. A change in energy by a factor of 2

corresponds to a change in half-life by 24 orders of magnitude.

For most nuclei with A > 190 and for many nuclei with 150 < A <

190, condition (1) is satisfied. However, not all of them are considered α

radioactive. For example, all natural isotopes of europium (151Eu, 153Eu),

tungsten (180W, 182W, 183W, 186W), bismuth (209Bi), lead (204Pb, 206Pb, 207Pb,
208Pb) have positive α decay energies. But due to the small values of Qα and,

accordingly, small decay probabilities, it is not always possible to detect it,

and even less so to determine the half-lives. Nevertheless, the development of

experimental methods has made it possible to measure the half-lives of up to

∼ 1019 years, such as of 180W: Qα = 2.508 MeV, T1/2 = 1.8 · 1018 years and of
206Bi: Qα = 3.531 MeV, T1/2 = 1.9 · 1019 years.

For even-even isotopes of the same element (that is, isotopes with an even

amount of protons and even amount of neutrons), the dependence of the half-

life on the α decay energy is well described by the empirical Geiger-Nuttall

law that reads:

lg T1/2 = A+B/(Qα)
1/2, (5)

where A and B are coefficients weakly depending on Z. Taking into account

the charge of the daughter nucleus Z, the relationship between the half-life

T1/2 and the α decay energy Qα can be represented in the form

lg T1/2 = 9.54
Z0.6

√
Qα

− 51.37, (6)

where T1/2 is in seconds, Qα is in MeV.

Fig. 1 shows experimental half-life values for 119 α radioactive even-even

nuclei (Z from 74 to 106) and their description using relation (6).

For odd-even, even-odd, and odd-odd nuclei, the general trend remains,

but their half-lives are 2 to 1000 times greater than for even-even nuclei with

the same Z and Qα.
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Figure 1. Experimental half-lives and their description using relation (6)

The main features of α decay, in particular the strong dependence of the

probability on energy, were explained by G. Gamow in 1928. He showed that

the probability of α decay is mainly determined by the probability of the

α particle passing through the potential barrier. Let us consider Gamow’s

model of α decay. It is assumed that the α particle moves in a spherical

region of radius R, where R is the radius of the nucleus. That is, in this

model, it is assumed that the α particle constantly exists in the nucleus.

The probability of α decay λ is equal to the product of the probability of

finding the α particle at the nuclear boundary f and the probability of its

passage through the potential barrier D (barrier transparency).

λ = fD =
ln 2

T1/2
. (7)

The value f can be identified with the number of collisions per unit time

that the α particle experiences with the inner boundaries of the barrier, which

can be estimated as

f =
v

2R
≈ v

2r0A1/3
≈ c

2r0A1/3

(
2(Tα + V0)

µαc2

)1/2

. (8)

Here, v is the speed of the α particle inside the nucleus, V0 is the depth of
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Figure 2. Dependence of the potential energy of interaction between the
α particle and the residual nucleus on the distance between their centers

the nuclear potential, µα is the reduced mass of the α particle given by the

formula

µα =
mαM(A− 4, Z − 2)

mα +M(A− 4, Z − 2)
, (9)

and Tα is the kinetic energy of the α particle determined by relation (3).

Substituting V0 = 35 MeV, Tα = 5 MeV into expression (8), we obtain for

nuclei with A ≈ 200, f ≈ 1021 s−1.

Fig. 2 shows the dependence of the potential energy between the α particle

and the residual nucleus on the distance between their centers. The Coulomb

potential is cut off at a distance R, which is approximately equal to the radius

of the residual nucleus – for small distances from the center, the nuclear strong

forces greatly contribute to the overall potential. The height of the Coulomb

barrier Bk is determined by the relation.

Bk =
zZe2

R
≈ zZe2

r0A1/3
≈ 2Z

A1/3
MeV. (10)

Here Z and z are the charges (in units of the elementary charge e) of the
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residual nucleus and the α particle, respectively, r0 ≈ 1.3 fm. For example,

for 238U Bk ≈ 30 MeV.

Three regions can be distinguished:

1) r < R – a spherical potential well of depth V0. In classical mechanics,

an α particle with kinetic energy Tα + V0 can move in this region but

cannot leave it. In this region, the strong interaction between the α

particle and the residual nucleus is essential;

2) R < r < rc – the region of the potential barrier, where the potential

energy is greater than the energy of the α particle, i.e., this is a region

forbidden for a classical particle;

3) r > rc – the region outside the potential barrier.

In quantum mechanics, the passage of an α particle through the barrier

(an effect known as quantum tunneling) is possible. The probability D of a

particle passing through the barrier (the barrier transparency coefficient) is

determined by the relation:

D = exp

[
−2

∫ rc

R

√
2µ

ℏ2
(V (r)−Qα)dr

]
. (11)

The half-lives calculated by formulas (7), (8) and (11) correctly convey

the most important pattern of α decay: the strong dependence of the half-life

T1/2 on the energy of the α particles Tα (or the α decay energy Qα). When

the half-lives change by more than 20 orders of magnitude, the differences

between the experimental values and the calculated ones are only 1–2 orders

of magnitude.

Of course, such discrepancies are still quite large. What is their source

and how should the theory be improved to reduce these discrepancies with

experiment? What factors should be additionally taken into account?

The formulas given above describe the emission of α particles with zero

orbital angular momentum lα. However, decay with non-zero orbital angular

momentum is also possible; moreover, in some cases, decay with lα = 0 is
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forbidden by conservation laws. In this case, the centrifugal potential Vl(r) is

added to the Coulomb potential Vk(r).

V (r) = Vk(r) + Vl(r), (12)

Vl(r) =
ℏ2l(l + 1)

2µαr2
. (13)

Although the height of the centrifugal barrier for heavy nuclei at l = 8 is only

about 10% of the height of the Coulomb barrier and the centrifugal potential

decreases faster than the Coulomb one, the effect is quite noticeable and for

large l can lead to suppression of α decay by more than 2 orders of magnitude.

Furthermore, the results of barrier transparency calculations are sensitive

to the mean radii of the nuclei R. For example, a change in R of only 4% leads

to a change in the half-life T1/2 by a factor of 5. Nuclei with A ≥ 230 can be

strongly deformed, which leads to α particles preferring to fly out along the

major axis of the ellipsoid, and the average probability of emission differs from

that for a spherical nucleus. The strong dependence of the half-life on the

nuclear radius can be used to determine the radii of nuclei from experimental

half-life values.

Finally, the considered model did not take into account the structure of

the states of the initial and final nuclei and the closely related problem of

the formation of the α particle in the nucleus, the probability of which was

silently assumed to be 1. More sophisticated models take these finer details

into account.

In Table 1, we show some data related to select α radioactive isotopes.
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Table 1. Characteristics of some α radioactive nuclei

Nucleus Energy of α Fraction of this Half-life

particles, MeV decay branch
238U 4.15 23% 4.468 · 109 y

4.2 77%
226Ra 4.6 5.4% 1600 y

4.78 94.6%
233U 4.78 14.6% 1.592 · 105 y

4.82 83%
239Pu 5.1 73% 24119 y

5.14 15.1%

5.16 11.5%
210Po 5.3 ∼ 100% 138.376 d
238Pu 5.46 28% 87.74 y

5.5 72%
244Cm 5.76 23% 18.11 y

5.80 77%
252Cf 6.08 15.7% 2.645 y

6.12 84.2%
288Mc 10.3 100% 0.17 s

For isotopes with several decay branches, different branches are related to

decays on different states of the daughter nucleus. Examples of such decays

are shown for isotopes 238U and 239Pu in Fig. 3.
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Figure 3. Diagrams of α decay of isotopes 238U and 239Pu

2. Radioactive families

Under natural conditions on Earth, there are about 40 α radioactive iso-

topes, which are combined into three radioactive series, starting with 236U

(A = 4n), 238U (A = 4n + 2), 235U (A = 4n + 3). With some stretch (since

the isotopes of this series have had time to decay during the existence of the

Earth), a fourth series can be added, which begins with 237Np (A = 4n+ 1).

After a series of successive decays, stable nuclei with a number of protons and

neutrons close or equal to the magic numbers (Z = 82, N = 126) are formed,

namely 208Pb, 206Pb, 207Pb, 209Bi. α decays are interspersed with β decays,

since after α decays the final nuclei are increasingly farther from the line of

β stability, i.e., they are neutron-rich.

A simplified decay chain of the radioactive series (A = 4n+2) is presented

on Fig. 4. All of the α decays are shown with arrows pointing straight down,

while β decays are shown with arrows pointing diagonally to the right. Half-

lives, α decay energies Qα and branching ratios are also shown.
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Figure 4. Simplified decay chain of the radioactive series (A = 4n + 2),
starting from 226Ra. The energies of α decay Qα are given in MeV. The
figure also shows the half-lives of the resulting radioactive isotopes and the
probabilities of the main decay channels
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3. Interaction of α particles with matter

When passing through matter, a heavy charged particle loses kinetic en-

ergy due to ionization and excitation of the atoms of the substance. These

losses determine the particle’s range. The probability of ionization of medium

atoms at energies of several MeV is approximately 103 times greater than the

probability of nuclear interaction. The magnitude of ionization losses, due to

the Coulomb interaction of the passing particle of charge ze with the elec-

trons of the substance, is determined mainly by said charge, velocity v, and

the electron density in the substance ne. The magnitude of ionisation en-

ergy loss per unit path length is described by the Bethe-like expression (in a

simplified form):

−
(
dT

dx

)
ion

=
4πe4z21
mev2

ZNB, (14)

where z1e is the particle charge, v its velocity, N the number density of

atoms in the absorber (atoms per cm3), Z the atomic number of the absorber,

me the electron mass, and B is a slowly varying logarithmic function (the

stopping number) which depends on velocity, the mean ionisation potential

of the absorber atoms, and the reduced mass of the interacting particles. In

the non-relativistic energy range the influence of the logarithmic factor B on

the energy dependence of ionisation losses is weak, so that roughly

−
(
dT

dx

)
ion

∼ 1

v2
.

The specific energy loss is proportional to the number of electrons in the

substance and the square of the charge of the particle losing energy to ion-

ization. The specific energy loss does not depend on the mass M of the

particle passing through the substance (provided M >> me), but signifi-

cantly depends on the particle’s velocity. Therefore, with decreasing velocity,

the specific losses of a charged particle in the substance increase.

In one ionization act in air, an α particle loses about 35 eV. That is, if

the initial kinetic energy of the α particle is 4 MeV, it will completely stop
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as a result of 4 · 106/35 ∼= 105 ionization acts.

The interaction of α particles with the nuclei of the substance mainly

reduces to Coulomb scattering at small angles. Thus, when moving in a

medium, charged particles with the indicated energy will gradually slow down

over a range length R, the trajectory of such a particle in the medium is

generally rectilinear, and the range is determined by the integral.

R =

∫ T0

0

dT

dT/dx
. (15)

The range R is measured in centimeters or in units of mass thickness ρ

(g/cm2).

Figure 5. Dependence of the intensity of the alpha-particle flux in the
medium on the distance between the source and the detector

The mean range Rα is defined as the thickness of the substance layer

upon passing through which half of the particles are absorbed (see Fig. 5).

The concept of the extrapolated range Re is also sometimes used. It is deter-

mined by extrapolation along the tangent to the range curve from the point

corresponding to the absorption of half of the particles. As can be seen from

Fig. 5, the ranges have a spread around the mean (known as the range strag-

gling), described by a Gaussian function. Range straggling comes as a result

statistical fluctuations in ionization losses. Indeed, if the average number of
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ions produced by an α particle over its range length is N , then the root mean

square deviation from this number will be
√
N , as per the Poisson distribu-

tion. Furthermore, when passing through the substance, the α particle can

undergo charge exchange, turning into a singly charged helium ion (4He+) or a

helium atom (4He). The different charge of the particle along the entire path

causes additional fluctuations in ionization and, consequently, in the range.

The mean range in air at room temperature and normal pressure for α

particles with energy of 2-10 MeV is related to the energy by the empirical

formula

Rα(cm) = 0.32 · T 3/2
α (MeV). (16)

4. Experimental setup

Figure 6. Block diagram of the setup

The block diagram of the experimental setup used in the current lab work

13



Figure 7. Geometry of the source, collimator, and detector

is shown in Fig. 6. The setup consists of a chamber with three α sources, a

silicon detector, and recording electronic equipment. A semiconductor silicon

detector is used as registering equipment in the setup. The sources are placed

on a turret which has three fixed rotation positions and can be moved in the

chamber relative to the detector. α particles emitted by the α radioactive

isotopes, go through a narrow opening called a collimator, so that a narrow

beam of particles travelling in a small solid angle, is registered by the detector

(see Fig. 7). This is done so that α particles travelling at different angles pass

through almost the same amount of absorbing material (air in this case) before

reaching the detector. In the measurement mode, the chamber lid must be

closed to prevent light from falling on the detector.

The electronic recording equipment consists of a charge-sensitive pream-

plifier and an amplifier. The charge-sensitive preamplifier is used to convert

information about the charge generated in the sensitive region of the detector

into the pulse amplitude. The amplifier amplifies and shapes the signals to

improve the signal-to-noise ratio. Pulses from the amplifier go to an analog-to-

digital converter (ADC). The ADC is used to measure the pulse amplitudes,

i.e., to convert analog information into digital. It generates a number linearly

dependent on the amplitude of the input signal.

An event processed by the ADC is recorded in the corresponding memory

cell (channel) corresponding to a certain amplitude range. The channels are

sequentially numbered so that larger amplitudes correspond to larger channel

numbers. As statistics are accumulated, a distribution of channel number vs.

number of events (the α decay spectrum) is formed in the computer memory,
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which can be observed on the monitor or printed after the measurements.

4.1. Semiconductor detectors

Semiconductor detectors are widely used for detection and spectrometry-

related measurements of charged particles and γ-quanta due to their high

energy resolution, short signal rise time, and small size. Semiconductor de-

tectors are usually made of silicon or germanium. In a semiconductor detector

(Fig. 8), a depleted (sensitive) region is created, in which there are no free

charge carriers. Upon entering the depleted region, an ionizing particle cre-

ates a significant number of charge carrier pairs, forming a thin cylinder of

electron and hole plasma along the track.

Figure 8. Circuit diagram of a semiconductor detector

The thickness of the depleted region in silicon detectors ranges from 10 µm

to about 5 mm. It can be said that a semiconductor detector is a solid-state

(crystalline) ionization chamber.

On average, 3.6 eV is spent to create one electron-hole pair in silicon,

regardless of the energy, mass, and specific losses of the primary particle.

For comparison, the energy required to create one ion pair in gas ionization

chambers is about 35 eV, and in a scintillation detector, about 350 eV is

needed to generate one photoelectron. Since the statistical accuracy of en-
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ergy measurement is determined by the number of generated charge carriers

N (standard deviation equals
√
N), the energy resolution of semiconductor

detectors is significantly higher than that of others. The input window of

the detector is usually made very thin (20 – 100 µg/cm2), and the incident

particles therefore lose a negligible fraction of their energy in it.

The free charge carriers generated by the ionizing particle in the depleted

region will move in the applied electric field, collecting on the electrodes

(Fig. 8). The number of electron-hole pairs is proportional to the energy loss

of the particle. To measure the energy of a particle, it is necessary that it loses

all its energy and stops in the sensitive region. Note that when an electron

and related hole move simultaneously, the total charge transferred is equal to

one elementary charge, and not two.

The collected charges form a current pulse, the integral of which carries

information about the energy that the particle lost in the sensitive region. The

current pulse from the detector goes to the charge-sensitive preamplifier. In

the charge-sensitive preamplifier, the current pulse is converted into a voltage

pulse, the amplitude of which is proportional to the particle energy.

5. Experimental procedure

The two goals of the current lab work include identification of several

unknown α radioactive isotopes and confirmation of the empirical relation

(16) describing the range of α particles propagating in the air.

Exercise №1. Calibration of the spectrometer and identification

of isotopes by α particle energies

As mentioned earlier, the ADC assigns each event a channel corresponding

to a certain amplitude range. The channels are sequentially numbered so

that larger amplitudes correspond to larger channel numbers n. As larger

amplitudes are generated by α particles with higher energy, larger channel

numbers correspond to events of registration of said α particles with higher
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energy Tα. The dependence for our setup is linear:

Tα = kn+ b, (17)

where k and b are some parameters. These parameters can be determined

through the calibration procedure. Specifically, one can measure an isotope

(226Ra in this case) with a known spectrum, aka, known energies of α particles,

and check which energies correspond to which channel numbers. Approxima-

tion with the linear dependence then yields the coefficients k and b. After the

calibration procedure is over, unknown α radioactive isotopes can be deter-

mined by measuring the energies of α particles emitted in the process of their

decay.

And so, the steps for this exercise are:

1) Install the 226Ra source and bring it as close as possible to the detector.

2) Measure the energy spectrum of alpha particles from the 226Ra source.

3) On the obtained spectrum, identify five peaks corresponding to alpha

particles with known energies: 4.782, 5.305, 5.490, 6.002 and 7.687 MeV.

Note that the presence of 5 peaks has to do with 226Ra undergoing a

chain of radioactive decays, resulting in creation of multiple α radioac-

tive isotopes.

4) For each peak, determine its position in the spectrometer channels.

5) Plot a graph of the energy Tα (MeV) versus the channel number n (the

calibration curve).

6) Approximate the obtained dependence with a linear function.

7) Install the unknown sources one by one and measure their α spectra

without changing the source position.

8) Using the calibration curve, determine the energies of the α particles

for each peak in the spectra of the unknown sources.
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Figure 9. The upper part of the figure shows the spectrum of alpha particles
from 226Ra and its decay products, the lower part shows the alpha spectrum
of an unknown source

9) Using the found energies and Table 1, identify the isotopes in the un-

known sources.

10) Present the measurement and analysis of the results in the form of

graphs similar to Fig. 9.

An example of obtained graphs is shown on Fig. 9.

Exercise 2. Investigation of the range of α particles in air

To study the dependence of the range of α particles on their kinetic energy,

we will require to change the thickness of the absorbing material. As this task

will have just air as the absorber, the experimental setup is made in such a

way that the source of α particles can be moved relative to the detector.

The previously used sample of 226Ra is perfect for our purposes as it emits α

particles of various energies, which should naturally have different ranges in

the air.

Procedure:
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1) Install the 226Ra source.

2) Bring the source as close to the detector as possible (mark ”0” on the

scale).

3) Sequentially increase the distance between the source and the detector.

4) At each step, measure the spectrum. Measurement step:

• On the initial section (before a noticeable drop in intensity) —

every 2 mm.

• On the section of sharp intensity drop — every 1 mm.

5) Continue measurements until the signal practically disappears.

6) For each of the five alpha lines of 226Ra, plot the intensity (count rate)

versus distance.

7) From each graph, determine the range Rα in air for particles of the

corresponding energy, as the distance at which the intensity drops by

half.

8) Plot the range Rα (cm) versus energy Eα (MeV).

9) Using the formula Rα = kT
3/2
α , determine the coefficient k from your

experimental data.

10) Estimate the accuracy of determining k.

11) Compare the obtained value of k with the data from the empirical for-

mula (16).

Important note: One should bear in mind that ”0” corresponds to a cer-

tain distance between the source and the detector, which may not be absolute

zero.

To submit the work, provide:

1) the graphs of measured spectra;

19



2) the calibration curve;

3) the energies of α lines and their assignment to specific isotopes that

emit them;

4) the graph of the dependence of intensity of the α particle peaks on the

thickness of the air layer between the α source and the detector;

5) an estimate of the coefficient k in the empirical dependence Rα(Tα).
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