
Laboratory Work No. 14.

Statistics of Particle Detection

This laboratory work explores statistical patterns in experimental measure-

ments in nuclear and particle physics. Using a particle detector, we estimate

the characteristics of stationary radiation fluxes and evaluate the accuracy of

these estimations.
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1. Introduction

The aim of this laboratory work is to study the statistical principles that

underlie experimental measurements in nuclear and particle physics. We will

analyze measurements of the natural background radiation level and the ac-

tivity of an unknown radiation source.

The main sources of natural background radiation are nuclear radioactive

decay and cosmic rays. When cosmic rays interact with the Earth’s atmo-

sphere, they generate fluxes of elementary particles, including hadrons and

leptons. Thus, our area of interest includes both processes characteristic of

atomic nuclei and those involving particles that constitute matter.

Nuclear and particle physics typically does not study objects as large as

atoms. However, in this work we will inevitably encounter processes that

also occur on the atomic scale. Therefore, we will briefly discuss some key

concepts of atomic physics.

1.1. The Atom

An atom is the smallest unit of matter that retains the chemical properties

of an element. As you may recall from chemistry, the typical radius of an atom

is of the order of 10−10 m. It is important to understand that this does not
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refer to a well-defined geometric size since, according to quantum mechanics,

atoms do not have exact geometric shapes (this is related to Heisenberg’s

uncertainty principle, which is not discussed in this guide but will be addressed

in the nuclear and particle physics course).

We assume that the atom consists of a positively charged nucleus (with a

size of the order of 10−15 to 10−14 m) which contains almost all of the atom’s

mass, and a surrounding cloud of point-like, negatively charged electrons.

These electrons compensate for the positive charge of the nucleus, making

the atom electrically neutral.

Electrons are bound to the nucleus by the Coulomb force. The energy

required to remove an electron from the atom varies in the range 4 to 24 eV.

For example, in a hydrogen atom, it is equal to 13.6 eV. The process of

removing an electron from an atom is called ionization.

The energy scales associated with atomic processes are much lower than

those common for nuclear physics and, even more so, for particle physics. In

general, the smaller is the object, the higher is the energy required to study

it. This reflects a principle we all know since childhood: to understand what’s

inside something, you have to hit it hard enough to break it. In physics, this

translates into a direct link between the energy of the probing particle and

the resolution it provides. The same principle applies to energy scales that

characterize different levels of the microscopic world (see [1, 2], section “de

Broglie Wavelength” for more details).

Therefore, in most cases, atomic effects can be neglected in nuclear and

particle physics. Conversely, when a particle interacts with matter and its en-

ergy is not sufficiently high, ionization becomes the main observable process.

1.2. The Nucleus

An atomic nucleus carries a positive electric charge, as it consists of posi-

tively charged protons and electrically neutral neutrons, collectively referred

to as nucleons. As mentioned earlier, nuclei occupy only a very small fraction

of the atoms’ volume, with a characteristic size of the order of 10−15 to 10−14
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meters, or 1–10 femtometers (fm). Like atoms, nuclei are not solid “balls”,

but rather distributions of fields.

Unlike atoms, which are governed entirely by the electromagnetic interac-

tion, nuclei cannot be explained by electromagnetism alone. From the point

of view of electromagnetic interaction, protons should repel each other, and

neutrons should not interact at all. Yet, protons and neutrons are bound

together inside nuclei by the strong nuclear force. Because this force has a

very short range of about 1 femtometer, it also determines the small size of

nuclei. (If the strong interaction had a long range, like electromagnetic or

gravitational forces, you would definitely notice its effects in the macroscopic

world: for example, your attraction to this manual would be so strong that

you might never be able to put it down.)

To date, more than 3,500 different nuclei have been discovered, but only

about 300 of them are stable. Nuclear stability is not an inherent property

— it simply means that the nucleus has no energetically favorable way to

transform into another isotope. If such a possibility exists, the nucleus will

tend to decay into a more energetically favorable configuration. This property

is called radioactivity — the spontaneous emission of particles from unstable

atomic nuclei as they decay into other nuclei or lower energy states of the

same isotope.

Let us now consider the N–Z diagram of atomic nuclei (see Fig. 1 - a

full-scale version is available at [3]). This chart shows all known isotopes

discovered to date. The horizontal axis represents the number of neutrons,

and the vertical axis shows the number of protons. Stable nuclei are shown

in black.

For light nuclei, the valley of stability (the location of stable nuclei) lies

along the line N = Z, reflecting the tendency of these nuclei toward sym-

metry between the number of protons and neutrons. However, for medium

and heavy nuclei, the valley curves downward, toward an excess of neutrons.

This is because the nuclear radius becomes sufficiently large, while the at-

tractive strong force only acts at short distances. Each nucleon (proton or

neutron) attracts only its immediate neighbors through the short-range strong
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Figure 1. N–Z diagram of atomic nuclei

interaction, whereas protons repel all other protons via the long-range elec-

tromagnetic force. To balance this repulsion, a greater number of neutral

neutrons is required.

The remaining nuclei are radioactive. Since the most energetically favor-

able configuration of nucleons in a nucleus corresponds to a higher binding

of nucleons with each other and a lower nuclear mass, nuclei tend, in their

transitions, toward the valley of stability (hence its name). In addition to

the energetic benefit of transitions, decays are constrained by a significant

number of conservation laws, leaving only a few possible decay channels for

nuclei: α radioactivity, β radioactivity, γ transitions and spontaneous fission.

Each color on the N–Z diagram of atomic nuclei corresponds to its own type

of radioactivity.

Nuclei located below the valley of stability (blue color) have an excess of

neutrons relative to protons (compared to the most favorable ratio charac-

teristic of the valley of stability). Moreover, the further the nucleus is from

the valley of stability, the higher the neutron excess. To approach the val-

ley of stability, neutron-rich nuclei need to reduce this excess. One might
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think that the simplest way to achieve this is to emit neutrons. However, nu-

clei are strongly bound structures, and a large amount of energy is required

to remove a nucleon even when sufficiently far from the valley of stability;

therefore, nuclei cannot spontaneously emit neutrons.

If nuclei cannot emit neutrons, the only remaining option is to convert a

neutron into a proton inside the nucleus. However, to satisfy charge conser-

vation, something negatively charged must be created along with the proton.

The lightest negatively charged particle is the electron. The next by mass

hierarchy, the muon (which we will discuss in the next section) has a mass

about 200 times greater than that of the electron, and there is not enough

energy for its creation.

In this form, the decay reads n → p+e−, or for a nucleus with mass number

(total number of nucleons) A and proton number Z: A
ZX → A

Z+1Y + e−, and

this is how β− decay was viewed until 1930. Studying the dependence of

electron energy in beta decay (also known as its spectrum), one finds that

electrons do not always have the same energy, as one would expect from the

conservation laws of energy and momentum in the decay of a single body into

two; rather, their energy distribution is continuous (see Fig. 2).

In 1930, Wolfgang Pauli set forth a hypothesis of a weakly interacting par-

ticle that is created during β decay and carries away an arbitrary part of the

decay energy. Later, the existence of the neutrino and its antiparticle — the

antineutrino — was confirmed experimentally. In β− decay, an antineutrino

is emitted:

n → p+ e− + ν̃e,

A
ZX → A

Z+1Y + e− + ν̃e.

Neutrinos and antineutrinos do not participate in either strong or electro-

magnetic interactions. We will not consider gravitational interaction here and

further — it is negligible due to the extremely small masses involved. We can

detect neutrinos because they participate in the remaining of the four funda-

mental interactions — the weak interaction, which is suppressed in probability
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Figure 2. Energy spectrum of electrons in beta decay of the neutron. The
horizontal axis shows energy, the vertical axis shows the number of registered
particles.

compared to the others. However, this also leads to enormous experimental

difficulties in detecting neutrinos: due to their low probability of interacting

with matter, very large detector volumes are required (for example, modern

neutrino telescopes such as IceCube, KM3NeT, Baikal-GVD, with size of the

order of one cubic kilometer). The probability of detecting neutrinos and

antineutrinos with a Geiger counter in our experiment is extremely low, so

we will not dwell further on the properties of this particle.

For nuclei with a proton excess (red nuclei on Fig. 1), everything works

similary, and we observe β+ radioactive nuclei. In the process of β+ decay, a

proton inside the nucleus turns into a neutron, decreasing the nuclear charge

without changing the total number of nucleons. Thus, the decay proceeds as

follows:

p → n+ e+ + νe,

A
ZX → A

Z−1Y + e+ + νe.

It should be emphasized that β+ decay is possible only for a proton bound

in a nucleus, unlike β− decay, which is possible even for a free neutron.

However, nuclei have another option to convert a proton into a neutron:

they can capture an electron from an atomic orbital. There is a non-zero

probability that an atomic electron will be inside the nucleus for a short

time. The nucleus captures the electron, typically from the nearest atomic

7



orbital, so that one of the protons in the nucleus absorbs the electron and

turns into a neutron and a neutrino:

e− + p → n+ νe,

e− + A
ZX → A

Z−1Y + νe.

Electron capture (ε-capture) is always energetically more favorable than

β+-decay, since the nucleon captures an existing electron instead of spending

additional energy to produce one among the final particles. On the other

hand, at nuclear energy scales, electron shells are effectively invisible, and the

probability of capture is low. Thus, the competition between β+ decay and

electron capture leads to different outcomes depending on the nucleus. The

regions of β+ decay and electron capture are combined and are indicated in

red.

In the region of heavy nuclei, not only does the position of the valley

of stability shift due to the increasing role of Coulomb interaction relative

to the strong force, but nuclei as a whole become less tightly bound. As

a result, it becomes energetically favorable for them to reduce their mass

number. As we discussed earlier, for most nuclei, the emission of individual

protons or neutrons is unfavorable. However, there is now the possibility to

emit a strongly bound cluster of nucleons. The record-holder among light

nuclei in this respect is 4
2He — the most abundant isotope in the Universe

after hydrogen.

Therefore, for Z > 83, α-decay becomes a characteristic mode of radioac-

tive transformation — the decay of an atomic nucleus accompanied by the

emission of an α-particle (isotope 4
2He):

X(A,Z) → Y (A− 4, Z − 2) + α.

For even heavier nuclei, the channel of spontaneous fission — that is, the

splitting of a nucleus into two fragments of comparable mass — becomes rel-

evant (shown in green on the N–Z diagram). The mechanism of this process

is very similar to α-decay: the nucleus also separates into two smaller nuclei.
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Figure 3. Penetration ability of different types of radiation: α, β, γ, and
neutron.

Both processes are governed by the strong interaction (nucleons are bound

by the strong force and separate without changing in number).

The penetration power of α radiation, however, is very low (and even

lower for fission fragments). A simple sheet of office paper is enough to

stop α particles (see Fig. 3). The Geiger counter used in this experiment

is not designed to detect α-particles (although sometimes a Geiger counter

is equipped with a thin mica window for this purpose). Therefore, we will

leave the detailed discussion of the two processes until they become relevant

in other tasks of this practical course.

Radioactive decays produce nuclei not only in their ground states but also

in excited states (having the same composition but possessing higher stored

energy). An excited nucleus cannot be stable, as it always has a lower-energy

state available, and so it may undergo subsequent α or β decays, or it may

return to its ground state via γ transitions.

A γ transition is the transition of an excited nucleus to its ground state

(or to a less excited state), accompanied by the emission of a γ quantum.

In the N-Z diagram, γ transitions are not assigned a separate color, since

they are not an intrinsic property of nuclei determined solely by their nucleon

configuration: any nucleus can be excited by providing it with energy. Nev-

ertheless, virtually all types of radioactivity are accompanied by secondary γ

radiation.
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1.3. Particles

As the characteristic energies increase, we gain access to studying objects

of smaller scales. We eventually stop observing nuclear processes and begin

to resolve the internal structure of the nucleons themselves. The point-like

constituents of nucleons are called quarks. Protons consist of three quarks,

two of which are the so-called up quarks (often simply denoted as u) and one

is the down quark (d), while neutrons are made up of two d quarks and one

u quark. All the diversity of matter around us and in the Universe can be

reduced to the existence of a small number of constituents, the dynamics of

which are governed by the four fundamental interactions already mentioned

above: strong, weak, electromagnetic and gravitational.

In addition to u and d quarks, there exist strange (s), charm (c), top (t),

and bottom (b) quarks, along with their antiparticles — antiquarks ū, d̄, c̄,

s̄, t̄, b̄. From the quark composition of protons and neutrons, it is simple to

deduce that u and d quarks carry fractional charges:2qu + qd = qp = 1e,

2qd + qu = qn = 0,

where qu, qd, qp, and qn are the electric charges of u and d quarks, protons,

and neutrons, respectively, and e ≈ 1.6 · 10−19 C is the elementary charge.

This relation holds for other quark types as well (see Table 1).

Quark Quark mass Quark charge

u (up) 2.16± 0.07 MeV +2
3e

d (down) 4.70± 0.07 MeV −1
3e

c (charm) 1.2730± 0.004 GeV +2
3e

s (strange) 93.5± 0.8 MeV −1
3e

t (top) 172.56± 0.31 GeV +2
3e

b (bottom) 4.183± 0.007 GeV −1
3e

Table 1. Properties of quarks.

The fact that quarks have fractional charges does not contradict the state-
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ment that e is the smallest charge observed in nature. Quarks do not exist in

a free state — this phenomenon is known as confinement. We observe par-

ticles composed of quarks, generally called hadrons : baryons — three-quark

states; mesons — quark–antiquark pairs; and antibaryons — composed of

three antiquarks (see Fig. 4).

Hadrons
(particles composed of quarks)

Baryons
(qqq)

Mesons
(qq̄)

Antibaryons
(q̄q̄q̄)

Figure 4. Classification of hadrons.

In this classification, the proton and neutron are baryons, while an ex-

ample of a meson is the pion (π-meson). Charged pions have the following

quark compositions: π+(ud̄), π−(dū). The presence of quark structure de-

termines the particles’ ability to participate in processes governed by strong

interaction.

We have already encountered protons and neutrons when discussing atomic

nuclei. Both are hadrons, which means they interact via the strong force —

and this is precisely what allows them to form strongly bound structures

which are atomic nuclei.

Not all free particles have quark structure. For example, electrons are

considered to be point-like in modern physics. They belong to the second

major class of particles — the leptons. Having no quark structure, leptons do

not participate in the strong interaction. Their participation in the electro-

magnetic interaction is determined solely by the presence of an electric charge

(unlike hadrons, whose quark structure guarantees such charges).

There are 6 leptons (+ 6 antiparticles): the electron (e−), its heavier

cousin the muon (µ−), and the heaviest of them all — the tau lepton (τ−),

along with their three neutral partners — the neutrinos νe, νµ, ντ .

(At this point, the attentive — and hopefully still conscious — reader should better

understand why we could not realistically expect to detect neutrinos effectively in our earlier
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discussion of β-decay).

Lepton Lepton mass Lepton charge

e− 0.511 MeVa −1e
νe < 4 · 10−7 MeVb 0
µ− 105.66 MeVc −1e
νµ < 0.19 MeV 0
τ− 1776.93± 0.09 MeV −1e
ντ < 18 MeV 0

Table 2. Properties of leptons.

6 quarks and 6 leptons, along with 6 antiquarks and 6 antileptons, are

sufficient to describe all known visible matter. We must also mention the

particles associated with the fundamental interactions: in quantum theory,

interactions are described not through classical fields but via the continuous

exchange of mediator particles. The carrier of the strong interaction is the

gluon (g), of the electromagnetic interaction — the photon (γ), and of the

weak interaction — the W+-boson, W−-boson, and Z0-boson. The hypothet-

ical carrier of the gravitational interaction — the graviton — is predicted by

certain theories but has not yet been experimentally detected. Finally, we

have the Higgs boson (H), responsible for giving mass to some particles.

The properties of these particles — collectively described by the Standard

Model — will be studied in detail in the nuclear and particle physics course.

In our case, we will only encounter some of them, as we are dealing with

the largest accelerator in the Universe — cosmic space. The vast cosmic

electromagnetic fields can accelerate particles to enormous energies, and when

they interact with the Earth’s atmosphere, they produce cascades of diverse

particles (pions, muons, strange mesons such as kaons).

Before reaching the Earth’s atmosphere, cosmic rays consist of acceler-

ated charged particles, primarily hydrogen nuclei — protons (about 95% of

all particles) — as well as heavier nuclei, up to iron and nickel. Protons inter-

act efficiently with the atmosphere (since they participate in all fundamental

a0.51099895000± 0.00000000015 MeV
bOnly an upper limit is known, set by experimental uncertainty.
c105.6583755± 0.0000023 MeV
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interactions) and produce pions. Charged pions are short-lived particles (life-

time ∼ 10−10 s) and predominantly decay via:

π− → µ− + ν̃µ; π+ → µ+ + νµ.

The muon is a lepton, and due to its different interaction mechanism with

the atmosphere, it has a high probability of reaching the Earth’s surface. As

a result, at sea level, cosmic radiation consists almost entirely of muons and

neutrons.

Nuclear reactions induced by cosmic rays in the atmosphere (and partly in

the lithosphere) also produce radioactive nuclei — cosmogenic radionuclides.

The main isotopes of this type are 3H, 7Be, 14C, and 22Na. Despite their low

concentrations in the environment, they decay relatively quickly and therefore

make a noticeable contribution to the natural background radiation.

2. Statistical Regularities of Experiments in Nu-

clear and Particle Physics

In quantum physics, which describes nuclear physics and particle physics,

the classical property of determinism is absent, i.e., all processes and in-

teractions are fundamentally probabilistic in nature. This means that

even an ideal experiment measuring a quantity with a macroscopic value (for

example, the neutron lifetime τn ≈ 900 s) can yield practically any result.

Thus, the result of an experiment in nuclear and particle physics is a random

variable in nature, and methods of mathematical statistics must be applied

to extract data from the experimental results.

From the statistical point of view, an experimental measurement of a phys-

ical quantity in the most general case can be described as follows. Within

a given physical model, the state of a physical system is characterized by a

set of physical quantities that have specific, well-defined values (true values),

which are, however, unknown to an external observer. The goal of the ex-

periment is to determine the true values of these quantities with the required
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accuracy. The experiment consists of some action performed on the system

under study, the result of which is a set of measured values of one or more

observable quantities (not necessarily those physical quantities that are of

interest to measure, as they may not be directly observable). Due to vari-

ous measurement errors, these measured values are random variables. At the

stage of data processing, the measured values are used to obtain estimates of

the desired physical quantities.

2.1. Parameters of Random Variable Distributions

The main characteristic of a random variable is the distribution function

F (x), which, by definition, for a random variable X is equal to the probability

that X ⩽ x, i.e.,

FX(x) = P (X ⩽ x). (1)

In each state of the system, the distribution functions of the measured quan-

tities are strictly defined and depend on the true values of the system param-

eters:

FX(x) = FX(x|ϑ1, ϑ2, . . . , ϑn) ≡ FX(x|ϑ), (2)

where ϑi are the parameters of the physical system, and ϑ is the vector com-

posed of ϑi values. In general, there may be several quantities Xj measured

in one experiment (for example, length, time, and temperature measured si-

multaneously), and in that case, the same parameter vector ϑ defines several

distribution functions for the measured quantities Xj. The measured quanti-

ties Xj can also be written as a vector X = {X1, X2, . . . , Xm}, which can then

be described as a random vector with a multivariate distribution function:

FX(x|ϑ) =


FX1

(x1|ϑ)
FX2

(x2|ϑ)
...

FXm
(xm|ϑ)

 =


P (X1 ⩽ x1|ϑ)
P (X2 ⩽ x2|ϑ)

...

P (Xm ⩽ xm|ϑ)

 . (3)

As a result of the experiment, a value of the vector X is measured, i.e., m

14



measured physical quantities depending on n parameters. The same experi-

ment can be repeated several times, resulting in a set of measured values of

the random vector X: X1,X2, . . . ,XN = {Xi} (in this case, the index refers

not to the components Xj but to the repetition number of the experiment).

This sequence is called a sample of the random vector X, and ultimately,

the goal of the experiment can be formulated as obtaining an estimate of the

physical parameters ϑ as some function τ of the measured sample {Xi}:

ϑ∗ = τ({Xi}), (4)

where the superscript “∗” denotes the estimate of the true value.

The description above corresponds to the general case of an experiment

in which the values of m variables depending on n parameters are measured.

In this work, we will consider the simplest one-dimensional case, for which

m = n = 1. In this case, the measurement and parameter vectors X and ϑ

reduce to scalars X and ϑ.

2.2. Mathematical Expectation and Variance

The estimate ϑ∗, being a function of random variables, is itself a random

variable and therefore has its own distribution function, as well as standard

characteristics of random variables such asmathematical expectation and vari-

ance.

To define these properties, it is necessary to introduce the concept of

discrete and continuous random variables. A random variable is called discrete

if it takes values from a set whose elements can be enumerated by natural

numbers, i.e., its possible values belong to a countable set. An example of a

discrete random variable is a quantity whose value is an integer (for example,

a number on a roulette wheel or the side of a tossed coin).

A continuous random variable takes values from a continuous set. A

random real number is an example of a continuous random variable.

A more visual description of random variables, compared to the distri-
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bution function, is provided by the probability distribution for discrete inte-

ger values and the probability density function for continuous variables. The

probability distribution of a discrete variable is the function P (k) equal to

the probability that the discrete random variable takes the value k.

The probability density function of a continuous random variable X is

a function p(x) such that the probability of X falling within the interval

(x, x+ dx] is P = p(x)dx.

The mathematical expectation of a discrete random variable K is

E[K] =
∑
i

kiP (ki), (5)

where the index i runs over all possible values K = ki.

The mathematical expectation of a continuous random variable X with a

probability density function p(x) is

E[X] =

∞∫
−∞

xp(x) dx. (6)

The term “mathematical expectation” is often used interchangeably with

“mean value”. In mathematical statistics, they are practically synonyms,

but we will use the concept of the mathematical expectation, as it explicitly

indicates the random nature of the quantity, whereas the mean value is a

more general term used in other areas of physics and mathematics.

In accordance with the properties of the integral, the mathematical ex-

pectation is a linear function of random variables:

E[αX + βY ] = αE[X] + βE[Y ], (7)

where X and Y are random variables, and α and β are constants.

The variance of a random variable X is defined as

D[X] = E[(X − E[X])2]. (8)
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Variance measures the uncertainty or spread of a random variable around

its mean. For the same purpose, the standard (or root-mean-square) deviation

is defined as

σ =
√
D[X]. (9)

The variance of the sum of random variables equals the sum of their vari-

ances:

D

[
K∑
i=1

Xi

]
= D[X1] +D[X2] + · · ·+D[XK ], (10)

and the variance of a random variable multiplied by a constant factor is

D[αX] = α2D[X]. (11)

2.3. Estimates

As mentioned above, an estimation of a parameter of a random variable

distribution (or a function of these parameters) is any method of determining

its value from a sample obtained through measurement. Since the input data

of the estimation process are random, the estimate itself is a random variable

and can therefore be characterized by its distribution function, mathematical

expectation, and variance.

The bias of an estimate ϑ∗ of some quantity ϑ is defined as

b = E[ϑ∗]− ϑ, (12)

i.e., the difference between the expected value of the estimate and the true

value of the estimated quantity. If the bias is b = 0, the estimate is called

unbiased. Obviously, if the bias is unknown, an unbiased estimate is preferred.

The variance of the estimate D[ϑ∗] characterizes its accuracy, along with

the mean squared error M :

M = E[(ϑ∗ − ϑ)2] = D[ϑ∗] + b2. (13)

There may be infinitely many ways to estimate the same quantity, but in
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practice, one seeks an estimate with minimal bias and variance. An estimate

with minimal mean squared error is called efficient.

2.4. Histogram and Empirical Distribution Function

After performing a series of experiments and obtaining a sample {x1, x2, . . . ,
xN} of a random variable X, one can construct an empirical distribution func-

tion, i.e., a step function F̂ (x) such that

F̂ (x) =
N(xi ⩽ x)

N
, (14)

where F̂ (x) at each point equals the ratio of the number of sample elements

less than or equal to x to the total number of elements.

 0

 0.2
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 0.8

 1

-3 -2 -1  0  1  2  3

F
(x

)

x

Figure 5. Empirical distribution function of a sample of 100 normally
distributed random numbers.

Example. Fig. 5 shows the empirical distribution function of a sample of

N = 100 normally distributed random numbers, along with the distribution

function corresponding to these numbers. As the sample size N increases, the
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empirical distribution function becomes smoother and approaches the “true”

distribution function.

For a visual representation of measured data, histograms are constructed.

To build a histogram for a measured sample {xi}:

1) choose the range [xmin, xmax) for the histogram;

2) select the number of histogram bins K, dividing the range [xmin, xmax]

into K intervals. The width of each bin is ∆x = (xmax − xmin)/K, and

the boundaries of the k-th bin correspond to [∆x (k − 1),∆x k);

3) count the number nk of sample elements {xi} falling within each bin;

4) plot the histogram as a bar graph, where the height of each bar is

hk = nk. Alternatively, a frequency distribution can be plotted with

hk = nk/(N∆x), so each bar represents the relative frequency rather

than the absolute count.
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Figure 6. Right panel: histogram for the same random numbers as in
Fig. 5. Left panel: original points versus measurement number.

2.5. Kolmogorov Goodness-of-Fit Test

Comparing the empirical distribution functions of two random variables

allows one to determine whether their distributions coincide. For this purpose,

the Kolmogorov-Smirnov test is used. According to this test, the hypothesis
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of identical distributions (homogeneity) of two samples {xi}, i = 1, 2, . . . , N ,

and {x′j}, j = 1, 2, . . . , N ′, is tested as follows:

1) compute the empirical distribution functions F̂ (x) and F̂ ′(x);

2) find the supremum D = sup
x

|F̂ (x)−F̂ ′(x)|, i.e., the maximum difference

between the two empirical distributions;

3) calculate the statistic t =
√

NN ′

N+N ′ D;

4) if t exceedsKα, the homogeneity hypothesis is rejected at the confidence

level 1− α; otherwise, the hypothesis is accepted (see Kα values in the

table).

Table 3. Confidence levels of the Kolmogorov-Smirnov test

1− α Kα

0.5 0.82757
0.6 0.89476
0.7 0.97306
0.8 1.0727
0.9 1.2238
0.95 1.3581
0.99 1.6276
0.999 1.9495
0.9999 2.2253

2.6. Estimation of the Mean, Standard Deviation, and

Standard Error

The main numerical quantity determined in Task №14 is the intensity of

natural background radiation events, i.e., the number of background particles

detected per unit time. To find it, one must compute the average number of

particles recorded during the measurement time. The mean value of a random

variable is its mathematical expectation, and the best way to find this value

is the efficient estimate of the mathematical expectation.
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Note that there is no general formula for the efficient estimate for arbitrary

distributions. However, for the Poisson and normal distributions encountered

in this work, the efficient estimate of the mean based on a measured sample

{xi} is given by

µ∗ =
1

N

N∑
i=1

xi, (15)

where N is the sample size, i.e., the efficient estimate coincides with the

arithmetic mean of the sample.

In addition to the mean estimate µ∗, its accuracy should be known, ex-

pressed by the standard deviation. The standard deviation of the mean esti-

mate is called the standard error and is computed as

σµ =

√
D[X]

N
=

σ√
N
. (16)

One commonly used method to estimate variance from a measured sample

{xi} is

D∗[X] =
1

N − 1

N∑
i=1

(µ∗ − xi)
2, (17)

where µ∗ is computed as above. Then, the estimate of the standard deviation

is:d

σ∗ =

√√√√ 1

N − 1

N∑
i=1

(µ∗ − xi)2. (18)

Thus, the commonly used formula for the standard error of the mean is:

σ∗
µ =

σ∗
√
N

=

√√√√√ N∑
i=1

(µ∗ − xi)2

N(N − 1)
. (19)

dThis is an example of a non-efficient estimate: σ∗ is biased relative to the true standard deviation. The
factor (N − 1)−1 reduces bias for small sample sizes N .
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3. Properties of Probability Distributions

3.1. Binomial Distribution

Consider a sequence of elementary experiments, each of which results in

one of two outcomes, “1” and “2” (for example, “heads” or “tails” in a coin

toss). Let the probability of one outcome be p, then the probability of the

other outcome is q = 1 − p. Suppose the experiment is repeated N times,

and consider a random variable k – the number of experiments resulting in

outcome “1”. This sequence of experiments is called a Bernoulli scheme. We

want to find the law governing k, i.e., the probability distribution P (k).

The probability of k occurrences of outcome “1” is proportional to pk.

Additionally, the remaining N − k experiments result in outcome “2”, which

is accounted for by the factor (1 − p)N−k. Finally, the last factor accounts

for the fact that pk(1 − p)N−k describes the probability of only one specific

sequence of outcomes in the Bernoulli trials. To account for all possible

combinations of k successes out of N , the binomial coefficient is used:

CN
k =

N !

k!(N − k)!
. (20)

Thus, the probability of obtaining k outcomes “1” in a series of N exper-

iments is

P (k) = CN
k pk(1− p)N−k. (21)

This distribution is called the binomial distribution. Its mean and variance

are

E[k] = Np, D[k] = Np(1− p). (22)

3.2. Statistical Laws of Nuclear Decay

Before considering limiting cases of the binomial distribution, let us discuss

general laws related to the decay of nuclei or particles. For convenience, we

refer to nuclear radioactive decay, but particle decay follows the same laws.

Consider the radioactive decay of N nuclei confined in a certain volume.
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The general behavior of radioactive isotopes can be estimated under the as-

sumption that the decay probability λ is constant for each isotope (commonly

called the decay constant). The number of nuclei at a given time t can be ob-

tained by solving the differential equation relating the change in the number

of nuclei per unit time to the total number of nuclei (see Lab Work No. 1 for

details), giving:

N(t) = N0e
−λt. (23)

This relation is usually called the law of radioactive decay. The half-life is

the time required for the number of nuclei of an isotope to decrease by half.

From the decay law, the half-life is related to the decay probability as:

T1/2 =
ln 2

λ
. (24)

The half-life alone does not provide complete information about the num-

ber of emitted particles, though it characterizes the properties of an isotope.

The same isotope, taken in different amounts, may in one case emit enough

particles to observe its radioactivity, and in another case produce only a small

background signal. To describe this effect, the quantity activity A is intro-

duced — the average number of nuclei decaying per unit time. It can be

calculated by multiplying the decay probability by the number of nuclei at

time t:

A(t) = λN(t). (25)

Activity is measured in curies (1 Ci = 3.7 · 1010 decays/s) and becquerels

(1 Bq = 1 decay/s).

3.3. Poisson Distribution

During time t, each nucleus may decay with probability

p = 1− e
−t ln 2

T1/2 = 1− e−λt. (26)
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This corresponds to a Bernoulli scheme, and the total number of decays k

follows a binomial distribution. In the case where N ≫ k (many nuclei, few

decays in a short time), the binomial distribution can be approximated by

the Poisson distribution:

P (k) = CN
k pk(1− p)N−k ≈

≈ µke−µ

k!
, (27)

where µ = Nλt.
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Figure 7. Poisson distribution for different values of the parameter µ.

The mean and variance of a random variable distributed according to the

Poisson law are

E[k] = µ, D[k] = µ, σ =
√

D[k] =
√
µ. (28)

3.4. Normal Distribution

As µ increases, the Poisson distribution becomes more symmetric, and its

discreteness becomes negligible. For sufficiently large µ, the Poisson distribu-
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tion can be approximated by the normal distribution:

P (k) ≈ N [µ,
√
µ](k), (29)

where the probability density function of the normal distribution is

N [µ, σ](x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
. (30)
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Figure 8. Comparison of the normal distribution N [µ, σ](x) and the Pois-
son distribution for µ = 10.

For the normal distribution, the mean and variance are:

E[x] = µ, D[x] = σ2. (31)

4. Experimental Setup

The schematic of the experimental setup used for this work is shown in

Fig. 9. The setup includes:

1) a Geiger–Müller counter designed to detect ionizing particles;
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Pulse Counter Display
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Figure 9. Diagram of the experimental setup.

2) a high-voltage converter that serves as the power supply for the Geiger–

Müller counter;

3) a digital pulse counter for registering voltage pulses at the output of the

Geiger–Müller counter;

4) a digital timer that automatically stops the pulse counter after a preset

time;

5) an electronic display with a keyboard for outputting results and con-

trolling the device.

All elements of the experimental setup are mounted inside a plastic hous-

ing. The Geiger counter is positioned diagonally along the top cover.

Warning! The setup includes a high-voltage source. Handle the instru-

ment very carefully. It is strictly forbidden to disassemble or damage the

housing of the device.

4.1. Operating Principle of the Geiger–Müller Counter

The Geiger counter belongs to a broad group of gas-filled detectors, which,

due to their high sensitivity to various types of radiation, relative simplicity,

and low cost, are widely used for radiation detection. Such a detector consists

of a gas-filled volume with two electrodes. A constant voltage is applied to
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Figure 10. Gas-discharge counter, its construction, and typical wiring.
1 — glass tube; 2 — metal cylinder (cathode); 3 — wire (anode).

the electrodes. The operating voltage depends on the gas pressure, which

may vary over a wide range for different detector operating modes.

Particle detection occurs as follows. A fast particle entering the counter

ionizes the gas. The electrons and heavy positive and negative ions produced

by the ionizing particle move in the electric field and undergo multiple colli-

sions (elastic and inelastic) with gas molecules. The average drift velocity of

electrons and ions is proportional to the electric field strength and inversely

proportional to the gas pressure. The resulting current is mainly due to elec-

trons, as their mobility is three orders of magnitude higher than that of heavy

ions. The voltage pulse across the resistor RL is amplified and sent to the

recording apparatus.

Fig. 11 shows the dependence of the output pulse amplitude on the applied

voltage (assuming that the time constant τ = RLC is much larger than the

charge collection time in the detector). Curves α and β correspond to different

initial ionizations, higher for curve α. These curves are called the counter’s

voltage-current characteristics. Each curve can be divided into characteristic

regions.

At low voltages two competing processes occur: charge collection at the

electrodes and recombination of ions in the gas. Increasing the voltage in-

creases ion drift velocity, reducing the probability of recombination.

In region I, nearly all charges produced in the detector are collected by

the electrodes. This region is called the ionization chamber region. Detectors
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Figure 11. Voltage-current characteristic of a typical gas-discharge counter
in different operating modes. The shape of pulses from α- and β-decays is
schematically shown.

operating in this region are called ionization chambers.

At higher voltages, electrons produced by primary ionization are acceler-

ated enough to ionize neutral gas atoms upon collision, producing secondary

ions. This is called gas amplification. Initially, the pulse amplitude increases

proportionally to primary ionization — the proportional region. In region II,

so-called proportional counters operate.

The proportional region is followed by the limited proportionality re-

gion III.

Finally, in region IV, gas amplification becomes so large that the collected

charge no longer depends on primary ionization. This is the Geiger region.

The discharge remains triggered, i.e., it starts only after an ionizing particle

passes through.

Further voltage increase leads to continuous self-sustained discharge (re-

gion V), which is unsuitable for particle detection.

In the Geiger counter, gas amplification is so high that secondary ion-

ization reaches saturation. Near the threshold of this region, conditions

for avalanche ionization occur only near the wire (e.g., in cylindrical coun-
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ters at V = 1000 V, the field E at the cathode is hundreds of V/cm, and

near the wire — 20000 ÷ 40000 V/cm). Increasing voltage enlarges the

avalanche region, and secondary ionization rapidly increases, forming an elec-

tron avalanche.

Thus, the counter undergoes a breakdown; the discharge covers the en-

tire gas volume. Large voltage pulses appear on the anode, independent of

primary ionization. Formation of even a single ion pair triggers a full dis-

charge. In the Geiger region, the gas amplification factor reaches 1010, and

pulse amplitude amounts to several volts or tens of volts.

The detector geometry is chosen based on its operating conditions. A

cylindrical counter consists of a metallic or metal-coated glass tube and a

thin wire along the cylinder axis. The wire serves as the anode, the tube —

as the cathode. End-window counters have an input window at the end.

Counters are usually used for short-range particles, so the window is made of

thin film.

Filling gases are usually special mixtures (e.g., Ar + HCl + HBr) with

quenching additives to improve the detector’s response time.

Geiger counters are highly sensitive to ionizing radiation. However, they

cannot differentiate radiation types or energies, thus they measuring intensity

only. An important feature is the counting plateau: the number of registered

pulses is nearly independent of voltage, as each ionizing particle triggers an

avalanche. Further voltage increase leads to spontaneous discharge.

The operating voltage is chosen in the middle of the plateau. Thresh-

old voltage, plateau position, and length are specific to each counter and

should be determined experimentally, usually ranging from several hundred

to a thousand volts.

Geiger counters are simple, reliable, and efficient. Their sensitivity de-

pends on particle penetration: only particles entering the active volume are

detected, so wall or window thickness should not exceed particle range. Any

particle producing at least one ion pair will almost certainly be detected.

To restore sensitivity after each registration, the gas must clear of heavy

ions. During this dead time, the counter cannot register new particles. Geiger
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counters have relatively long dead times: 10−4–10−3 s, and resolution does not

exceed a few thousand counts per second.

Counters are also insensitive to γ-rays. Detection occurs only via sec-

ondary charged particles, produced in the counter walls, made of high-Z ma-

terial. Detection efficiency is usually only 1–2%.

If a material with a high neutron cross-section is placed in the detector,

neutron capture reactions produce detectable particles. Slow neutrons are

often detected using boron trifluoride counters, where α-particles are pro-

duced in 10B(n, α) reactions. Fast neutrons are detected using hydrogen-rich

detectors, where recoil protons produce the discharge.
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5. Experimental Procedure

In each exercise, the pulse counter measures the number of background

radiation particles detected over a fixed time. The results for each exercise

are recorded in a table:

Exercise №

Measurement duration ∆t = , number of measurementsN = .

Measurement # Number of pulses

1

2

. . .

100

5.1. Data Collection

5.1.1. Exercise №1. Background measurement.

1) Choose a measurement duration ∆t between 30–40 s.

2) Set ∆t on the timer according to the instrument manual.

3) Perform N = 100 measurements of the number of particles detected in

time ∆t.

4) Record the results in the table.

5.1.2. Exercise №2. Measurement of an unknown source.

1) Place the unknown source on the top of the detector.

2) Use the same measurement duration ∆t as in Exercise 1.

3) Perform N = 100 measurements of the number of particles detected in

time ∆t and record them in a table.
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Warning! Do not move the source on the detector during the entire series

of measurements.

6. Data Analysis

The data from both exercises are analyzed together.

1) For each series, calculate the mean count µ∗ using formula (15) and the

standard error of the mean (19).

The standard error can also be estimated differently: the Poisson vari-

ance can be approximated from the mean, giving the standard error via

formula (16). Comparing both methods allows checking if the observed

distribution follows the Poisson law.

Also calculate the average counting rate and its error using

I =
µ

∆t
. (32)

2) Represent measurement results from both exercises as frequency his-

tograms. For comparison, plot both histograms on the same page, with

identical X-axis limits and bin width ∆x. Original frequency values are

first recorded in a notebook.

3) On each histogram, also plot: points — theoretical Poisson probabilities

with parameter µ = µ∗, solid curve — normal distribution with µ = µ∗,

σ =
√
µ∗.

4) Construct empirical distribution functions for both exercises and check

sample homogeneity using the Kolmogorov criterion. Record results in

a table like Table 4.

Then find the maximum absolute difference between empirical distribu-

tions and calculate statistic t. If t exceeds Kα for confidence level 1−α,
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x N(xi ⩽ x) F̂ (x) |F̂ (x)− F̂ ′(x)|
Ex. 1 Ex. 2 Ex. 1 Ex. 2

xmin

xmin + 1
. . .
xmax

Table 4. Empirical distribution functions. Here xmin and xmax are the
minimum and maximum counts in both exercises, N(xi ⩽ x) is the number

of measurements with counts not exceeding x, and F̂ (x) is the empirical
distribution function from formula (14).

the homogeneity hypothesis is rejected, indicating that the distributions

differ, i.e., the unknown source is radioactive.

5) If the source is radioactive, determine its counting rate using

Itotal = Ibackground + Isource. (33)

Knowing the source mass, 40K natural abundance ν = 0.012%, half-

life T1/2(
40K) = 1.248 · 109 years, and potassium content in the sample,

estimate the probability of detecting β-decays from 40K, considering

that the detector covers 10% of the full solid angle.

6) If no radioactive isotope is present, measurements from Exercise 2 are

used to refine the background counting rate.
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To submit the work, provide:

1) tables of experimental measurements;

2) histograms with overlaid theoretical calculations;

3) mean counts and counting rate for each exercise;

4) comparison of standard error estimates from both methods;

5) graphs of empirical distributions and the result of the homogeneity test

for the source;

6) counting rate from the source and estimated detection probability (if

present) or refined background counting rate;

7) conclusions from the experiment.
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