
ЧАСТЬ ΙΙ

ЛАБОРАТОРНАЯ РАБОТА №4

ИЗУЧЕНИЕ ОСНОВ ПРОГРАММИРОВАНИЯ ЦИФРОВЫХ
СИГНАЛЬНЫХ ПРОЦЕССОРОВ (DSP) НА ПРИМЕРЕ

ADSP2181".

А.М. АНОХИНА

1. Перечень разделов справочной литературы,
необходимых для проведения работы

1.0. Программная модель и система команд процессоров семейства
AD21XX.
1.1. ADSP2181 Data Sheet.
 Структура процессора ADSP2181.
1.2. ADSP2100 Family User's Manual.
 Система команд.
 Система прерываний.
 Последовательный порт.
 Автобуферизация.
1.3. AD1847 Data Sheet.
 Структура ЦАП/АЦП AD1847.
 Управление ЦАП/АЦП AD1847.
1.4. EZKIT Lite Reference Manual.
 Структура лабораторного устройства EZKIT Lite.
1.5. ADSP2100 Family. Assembler Tools & Simulator Manual.
 I/O Operations, SERIAL PORTS.

2. Задание.
2.1. Разобраться в принципах работы программы MEANDR.DSP,
предназначенной для генерации прямоугольных колебаний.
 Загрузить программу в симулятор и изучить использование
регистров процессора и их изменение в процессе работы программы.

2.2. Модифицировать программу MEANDR.DSP так, чтобы на
выходе ЦАП
генерировались:

 Выход ЦАП1 - прямоугольные импульсы, передний фронт которых
совпадает с началом возрастающей части треугольных колебаний на
ЦАП2, а задний фронт - с началом спадающей части треугольных
колебаний.
 61

 Размах : от 0 до 0.5 диапазона
 (Исходя из того, что полный диапазон ЦАП эквивалентен -1..1)
 Выход ЦАП2 - треугольные колебания (наклонный возрастающий
участок, затем наклонный спадающий участок и т.д.).
 Размах (с точностью не хуже 1%): 25%..75% диапазона
 Длительность возрастающей части (с точностью 1%): 5 мс
 Длительность спадающей части (с точностью 1%): 13 мс

2.3. Проверить работоспособность программы на симуляторе.
 Откомпилировать и скомпоновать программу.
 Отладить при помощи симулятора.

2.4. Загрузить программу в лабораторное устройство EZKIT-Lite
и изучить получаемые на выходе устройства сигналы
при помощи осциллографа.

2.5. Придумать и реализовать алгоритм для генерации треугольных
колебаний с заданными параметрами с точностью 0.01%.
Используйте представление чисел "fractional" (дробное) как для
подсчета текущей "фазы", так и для задания размаха колебаний.
Повторите пп 2.3, 2.4.

3. Методические указания.

3.0. Местонахождение файлов.

 Файлы, необходимые для выполнения лабораторной работы,
находятся на диске H:, в подкаталоге LAB2. Если на диске H:
нет подкаталога LAB2, необходимо скопировать одноименный
каталог с диска J:. В дальнейшем по умолчанию будет
подразумеваться, что текущим каталогом является H:\LAB2\.

3.1. Запуск симулятора осуществляется командой

sim2181 -a ezkit_lt -e файл-программы

 Используйте командный файл для запуска симулятора.

 Для освоения симулятора используйте встроенную HELP-систему.

 Для изучения работы программы используйте окна:
 62

- Program Memory
- Data Memory
- Computational Registers
- SPORT Registers

3.2. Редактирование текста программы можно производить
встроенным редактором оболочки Norton Commander,
либо редактором текстов NE.
 Компиляция программы осуществляется командой:
asm21 имя-файла -2181
 Компоновка:
ld21 имя-файла -a ezkit_lt -e имя-файла -x -g

 Используйте командный файл для компиляции и компоновки
программы.

3.3. Загрузка скомпонованной программы в EZKIT Lite
производится
при помощи программы-монитора, которая запускается под
управлением системы Windows.
 Запуск Windows осуществляется командой win.

4. Рекомендации для выполнения задания:
 Для ознакомления с принципом действия программы изучите ее
работу в симуляторе.
 Модификацию программы рекомендуется производить в той части,
которая обеспечивает генерацию меандра, а также в части,
инициализирующей переменные меандра.
 Для вычисления мгновенного значения текущего наклонного
участка можно воспользоваться операцией умножения, используя в
качестве параметров начальное значение напряжения наклонного
участка, номер отсчета относительно начала текущего наклонного
участка и требуемое изменение напряжения за время одного отсчета.

5. Вопросы.
 5.1. Почему на осциллографе не видна ступенчатость треугольного
колебания? Почему при генерации меандра видны ярко выраженные
колебания на вершинах импульсов до и после фронтов?

6. Дополнительное задание
 Модифицируйте программу с целью генерации
зацикленной последовательности из нескольких участков
различного наклона и различной длительности.
 63

{**

 *
 * This sample program is organized into the following
sections:
 *
 * Assemble time constants
 * Interrupt vector table
 * ADSP 2181 intialization
 * ADSP 1847 Codec intialization
 * Interrupt service routines

.module/RAM/ABS=0 loopback;

{**

 *
 * Assemble time constants
 *

.const IDMA= 0x3fe0;
.const BDMA_BIAD= 0x3fe1;
.const BDMA_BEAD= 0x3fe2;
.const BDMA_BDMA_Ctrl= 0x3fe3;
.const BDMA_BWCOUNT= 0x3fe4;
.const PFDATA= 0x3fe5;
.const PFTYPE= 0x3fe6;

.const SPORT1_Autobuf= 0x3fef;
.const SPORT1_RFSDIV= 0x3ff0;
.const SPORT1_SCLKDIV= 0x3ff1;
.const SPORT1_Control_Reg= 0x3ff2;
.const SPORT0_Autobuf= 0x3ff3;
.const SPORT0_RFSDIV= 0x3ff4;
.const SPORT0_SCLKDIV= 0x3ff5;
.const SPORT0_Control_Reg= 0x3ff6;
.const SPORT0_TX_Channels0= 0x3ff7;
.const SPORT0_TX_Channels1= 0x3ff8;

 64

.const SPORT0_RX_Channels0= 0x3ff9;

.const SPORT0_RX_Channels1= 0x3ffa;

.const TSCALE= 0x3ffb;

.const TCOUNT= 0x3ffc;

.const TPERIOD= 0x3ffd;

.const DM_Wait_Reg= 0x3ffe;

.const System_Control_Reg= 0x3fff;

.var/dm/ram/circ rx_buf[3]; /* Status + L data +
R data */
.var/dm/ram/circ tx_buf[3]; /* Cmd + L data + R
data */
.var/dm/ram/circ init_cmds[13];
.var/dm stat_flag; { Status: 1 - init, 0
- wrk }

.var time;
.var time_max;

.var/circ meandr_values[4];

.init time: 0;
.init meandr_values: -16384, 5,16384, 5;

.init tx_buf:0xc000, 0x0000, 0x0000; /* Initially set MCE
*/

.init init_cmds:
 0xc002, {
 Left input control reg
 b7-6: 0=left line 1
 1=left aux 1
 2=left line 2
 3=left line 1 post-mixed loopback
 b5-4: res
 b3-0: left input gain x 1.5 dB
 }
 0xc102, {
 Right input control reg
 b7-6: 0=right line 1
 1=right aux 1
 2=right line 2
 3=right line 1 post-mixed
loopback
 b5-4: res
 b3-0: right input gain x 1.5 dB
 }
 0xc288, {
 left aux 1 control reg

 65
 b7 : 1=left aux 1 mute

 b6-5: res
 b4-0: gain/atten x 1.5, 08= 0dB,
00= 12dB
 }
 0xc388, {
 right aux 1 control reg
 b7 : 1=right aux 1 mute
 b6-5: res
 b4-0: gain/atten x 1.5, 08= 0dB, 00= 12dB
 }
 0xc488, {
 left aux 2 control reg
 b7 : 1=left aux 2 mute
 b6-5: res
 b4-0: gain/atten x 1.5, 08= 0dB,
00= 12dB
 }
 0xc588, {
 right aux 2 control reg
 b7 : 1=right aux 2 mute
 b6-5: res
 b4-0: gain/atten x 1.5, 08= 0dB,
00= 12dB
 }
 0xc680, {
 left DAC control reg
 b7 : 1=left DAC mute
 b6 : res
 b5-0: attenuation x 1.5 dB
 }
 0xc780, {
 right DAC control reg
 b7 : 1=right DAC mute
 b6 : res
 b5-0: attenuation x 1.5 dB
 }
 0xc85c, {
 data format register
 b7 : res
 b5-6: 0=8-bit unsigned linear PCM
 1=8-bit u-law companded
 2=16-bit signed linear PCM
 3=8-bit A-law companded
 b4 : 0=mono, 1=stereo
 b0-3: 0= 8.
 1= 5.5125
 2= 16.
 3= 11.025
 4= 27.42857
 5= 18.9

 66
 6= 32.

 7= 22.05
 8= .
 9= 37.8
 a= .
 b= 44.1
 c= 48.
 d= 33.075
 e= 9.6
 f= 6.615
 (b0) : 0=XTAL1 24.576 MHz; 1=XTAL2
16.9344 MHz
 }
 0xc909, {
 interface configuration reg
 b7-4: res
 b3 : 1=autocalibrate
 b2-1: res
 b0 : 1=playback enabled
 }
 0xca00, {
 pin control reg
 b7 : logic state of pin XCTL1
 b6 : logic state of pin XCTL0
 b5 : master - 1=tri-state CLKOUT
 slave - x=tri-state CLKOUT
 b4-0: res
 }
 0xcc40, {
 miscellaneous information reg
 b7 : 1=16 slots per frame, 0=32 slots
per frame
 b6 : 1=2-wire system, 0=1-wire system
 b5-0: res
 }
 0xcd00; {
 digital mix control reg
 b7-2: attenuation x 1.5 dB
 b1 : res
 b0 : 1=digital mix enabled
 }

 *
 * Interrupt vector table
 *

 jump start; rti; rti; rti; {00: reset }
 rti; rti; rti; rti; {04: IRQ2 }
 rti; rti; rti; rti; {08: IRQL1 }

 67
 rti; rti; rti; rti; {0c: IRQL0 }

 jump next_tx; {10: SPORT0 tx }
 rti; rti; rti;
 jump input_samples; {14: SPORT1 rx }
 rti; rti; rti;
 jump irqe; rti; rti; rti; {18: IRQE }
 rti; rti; rti; rti; {1c: BDMA }
 rti; rti; rti; rti; {20: SPORT1 tx or
IRQ1 }
 rti; rti; rti; rti; {24: SPORT1 rx or
IRQ0 }
 rti; rti; rti; rti; {28: timer }
 rti; rti; rti; rti; {2c: power down }

 *
 * ADSP 2181 intialization
 *

start:
 i0 = ^rx_buf;
 l0 = %rx_buf;
 i1 = ^tx_buf;
 l1 = %tx_buf;
 i3 = ^init_cmds;
 l3 = %init_cmds;
 i4 = ^meandr_values;
 l4 = %meandr_values;
 m1 = 1;
 m5 = 1;
{ DAC variables init }
 ar = dm (i4,m5);
 dm (tx_buf+1) = ar; { DAC1 value }
 dm (tx_buf+2) = ar; { DAC2 value }
 ar = dm (i4,m5);
 dm (time_max) = ar;
{====== S E R I A L P O R T #0 S T U F F
============}
ax0 = b#0000001010000111; dm (SPORT0_Autobuf) = ax0;
 { |||!|-/!/|-/|/|+- receive autobuffering 0=off,
1=on
 |||!| ! | | +-- transmit autobuffering 0=off,
1=on
 |||!| ! | +---- | receive m?
 |||!| ! | | m1
 |||!| ! +------- ! receive i?
 |||!| ! ! i0
 |||!| ! !
 |||!| +========= | transmit m?
 |||!| | m1

 68
 |||!+------------ ! transmit i?

 |||! ! i1
 |||! !
 |||+============= |BIASRND MAC biased rounding
control bit
 ||+-------------- 0
 |+--------------- | CLKODIS CLKOUT disable
control bit
 +---------------- 0 }

 ax0 = 0; dm (SPORT0_RFSDIV) = ax0;
 { RFSDIV = SCLK Hz/RFS Hz - 1 }
 ax0 = 0; dm (SPORT0_SCLKDIV) = ax0;
 { SCLK = CLKOUT / (2 (SCLKDIV + 1) }

 ax0 = b#1000011000001111; dm (SPORT0_Control_Reg) =
ax0;
 { multichannel
 ||+--/|!||+/+---/ | number of bit per word - 1
 ||| |!||| | = 15
 ||| |!||| |
 ||| |!||| |
 ||| |!||+====== ! 0=right just, 0-fill;
1=right just, signed
 ||| |!|| ! 2=compand u-law; 3=compand
A-law
 ||| |!|+------- receive framing logic 0=pos,
1=neg
 ||| |!+-------- transmit data valid logic
0=pos, 1=neg
 ||| |+========= RFS 0=ext, 1=int
 ||| +---------- multichannel length 0=24, 1=32
words
 ||+-------------- | frame sync to occur this
number of clock
 || | cycle before first bit
 || |
 || |
 |+--------------- ISCLK 0=ext, 1=int
 +---------------- multichannel 0=disable,
1=enable}

 { non-multichannel
 |||!|||!|||!+---/ | number of bit per word - 1
 |||!|||!|||! | = 15
 |||!|||!|||! |

 69
 |||!|||!|||! |

 |||!|||!|||+===== !0=righ just,0-fill;1=right
just,signed
 |||!|||!||+------ ! 2=compand u-law; 3=compand
A-law
 |||!|||!|+------- receive framing logic 0=pos,
1=neg
 |||!|||!+-------- transmit framing logic 0=pos,
1=neg
 |||!|||+========= RFS 0=ext, 1=int
 |||!||+---------- TFS 0=ext, 1=int
 |||!|+----------- TFS width 0=FS before
data,1=FS in sync
 |||!+------------ TFS 0=no, 1=required
 |||+============= RFS width 0=FS before
data,1=FS in sync
 ||+-------------- RFS 0=no, 1=required
 |+--------------- ISCLK 0=ext, 1=int
 +---------------- multichannel 0=disable,
1=enable }

 ax0 = b#0000000000000111; dm (SPORT0_TX_Channels0)
= ax0 { ^15 00^
transmit word enables: channel # == bit # }
 ax0 = b#0000000000000111; dm (SPORT0_TX_Channels1)
= ax0;
 { ^31 16^ transmit word enables:
channel # == bit # }
 ax0 = b#0000000000000111; dm
(SPORT0_RX_Channels0) = ax0;
 { ^15 00^ receive word enables:
channel # == bit # }
 ax0 = b#0000000000000111; dm
(SPORT0_RX_Channels1) = ax0;
 { ^31 16^ receive word enables:
channel # == bit # }

{=== S Y S T E M A N D M E M O R Y S T U F F
======}
 ax0 = b#0000111111111111; dm (DM_Wait_Reg) =
ax0;
 { |+-/+-/+-/+-/+-/- ! IOWAIT0
 || | ! | !
 || | ! | !
 || | ! +------ | IOWAIT1
 || | ! |
 || | ! |
 || | +--------- ! IOWAIT2
 || | !
 || | !
 || +------------ | IOWAIT3

 70
 || |

 || |
 |+=============== ! DWAIT
 | !
 | !
 +---------------- 0 }

 ax0 = b#0001000000000000; dm
(System_Control_Reg) = ax0;
 { +-/!||+-----/+-/- | program memory wait
states
 | !||| | 0
 | !||| |
 | !||+---------- 0
 | !|| 0
 | !|| 0
 | !|| 0
 | !|| 0
 | !|| 0
 | !|| 0
 | !|+----------- SPORT1 1=serial port,
0=FI, FO, IRQ0, IRQ1,..
 | !+------------ SPORT1 1=enabled,
0=disabled
 | +============= SPORT0 1=enabled,
0=disabled
 +---------------- 0
 0
 0 }

 ifc = b#00000011111111; { clear pending
interrupt }
 nop;
 icntl = b#00000;
 { ||||+- | IRQ0: 0=level, 1=edge
 |||+-- | IRQ1: 0=level, 1=edge
 ||+--- | IRQ2: 0=level, 1=edge
 |+---- 0
 |----- | IRQ nesting: 0=disabled,
1=enabled
 }
 mstat = b#1000000;
 { ||||||+- |Data register bank select
 |||||+-- |FFT bit reverse mode (DAG1)
 ||||+--- |ALU overflow latch mode,
1=sticky
 |||+---- |AR saturation mode,
1=saturate, 0=wrap
 ||+----- | MAC result, 0=fractional,
1=integer

 71
 |+------ | timer enable

 +------- | GO MODE }

 *
 * ADSP 1847 Codec intialization
 *

 { clear flag }
 ax0 = 1;
 dm(stat_flag) = ax0;

{ enable transmit interrupt }
 imask = b#0001000000;
 { |||||||||+ | timer
 ||||||||+- | SPORT1 rec or IRQ0
 |||||||+-- | SPORT1 trx or IRQ1
 ||||||+--- | BDMA
 |||||+---- | IRQE
 ||||+----- | SPORT0 rec
 |||+------ | SPORT0 trx
 ||+------- | IRQL0
 |+-------- | IRQL1
 +--------- | IRQ2}
 ax0 = dm (i1, m1); { start interrupt }
 tx0 = ax0;
check_init:
 ax0 = dm (stat_flag); { wait for entire
init }
 af = pass ax0; { buffer to be sent
to }
 if ne jump check_init; { the codec
}
 ay0 = 2;
check_aci1:
 ax0 = dm (rx_buf); { once initialized, wait
for codec }
 ar = ax0 and ay0; { to come out of
autocalibration }
 if eq jump check_aci1; { wait for bit set }
check_aci2:
 ax0 = dm (rx_buf); { wait for bit clear
}
 ar = ax0 and ay0;

 72
 if ne jump check_aci2;

 idle;
 ay0 = 0xbf3f; { unmute left DAC }
 ax0 = dm (init_cmds + 6);
 ar = ax0 AND ay0;
 dm (tx_buf) = ar;
 idle;
 ax0 = dm (init_cmds + 7); { unmute right DAC }
 ar = ax0 AND ay0;
 dm (tx_buf) = ar;
 idle;
 ifc = b#00000011111111; { clear any pending
interrupt }
 nop;
 imask = b#0001010000; { enable tx0 & irqe
interrupt }
 { |||||||||+ | timer
 ||||||||+- | SPORT1 rec or IRQ0
 |||||||+-- | SPORT1 trx or IRQ1
 ||||||+--- | BDMA
 |||||+---- | IRQE
 ||||+----- | SPORT0 rec
 |||+------ | SPORT0 trx
 ||+------- | IRQL0
 |+-------- | IRQL1
 +--------- | IRQ2}
{ wait for interrupt and loop forever }
talkthru: idle;
 jump talkthru;
{**

 * Interrupt service routines

 receive interrupt is not used}
input_samples:
 rti;
{--

 transmit interrupt used for Codec initialization, and
Data generating
 --
--------}
next_tx:
 ena sec_reg;
 ar = dm (stat_flag);
 ar = pass ar;
 if eq jump next_data;
{ init Codec }
 ax0 = dm (i3, m1); { fetch next control
word and }

 73

 dm (tx_buf) = ax0; { place in transmit slot
0 }
 ax0 = i3;
 ay0 = ^init_cmds;
 ar = ax0 - ay0;
 if gt rti; { rti if more control words still
waiting }
 ax0 = 0xaf00; { else set done flag and
}
 dm (tx_buf) = ax0; { remove MCE if done
initialization }
 ax0 = 0;
 dm (stat_flag) = ax0; { reset status flag }
 rti;
next_data:
 ay0 = dm (time);
 ay1 = dm (time_max);
 ar = ay0+1;
 af = ay1-ar;
 if gt jump calc;
{ change meandr variables }
 ar = dm (i4,m5);
 dm (tx_buf+1) = ar;
 dm (tx_buf+2) = ar;
 ar = dm (i4,m5);
 dm (time_max) = ar;
 ar = 0; { reset time }
calc:
 dm (time) = ar;
 rti;

{ INTERRUPT button service - indicator FL1 flashing}
irqe: toggle fl1;
 rti;

.endmod;

 74

