YACTbD II
JIABOPATOPHAS PABOTA Ne4

MN3YYEHUE OCHOB TIPOI'PAMMMUPOBAHUSA IU®POBLIX
CUTI'HAJIBHBIX MTPOLHECCOPOB (DSP) HA IPUMEPE
ADSP2181".

A.M. AHOXHHA

1. Ilepeyens pa3aesioB CIPABOYHOM JIUTEPATYPHI,
HEe00XO0AMMBIX /JIs1 IPOBEACHUS PAdOTHI
1.0. IIporpamMmmHast MOJieb ¥ CHCTEMa KOMaH]I IIPOLIECCOPOB CEMEICTRA
AD21XX.
1.1. ADSP2181 Data Sheet.
Crtpykrypa npoueccopa ADSP2181.
1.2. ADSP2100 Family User's Manual.
Cucrema KoMaH/I.
Cucrema npepbIBaHUN.
[TocnenoBaTenbHbIN TOPT.
ABTOOYpepuzanus.
1.3. AD1847 Data Sheet.
Crpykrypa HAII/ALIT AD1847.
VYnpasnenue LHAIT/ALIL AD1847.
1.4. EZKIT Lite Reference Manual.
Crpykrypa naboparopHoro yctporictea EZKIT Lite.
1.5. ADSP2100 Family. Assembler Tools & Simulator Manual.
I/0O Operations, SERIAL PORTS.

2. 3anaHue.
2.1. PazoOparbes B npuHIunax padotsl nporpammsl MEANDR.DSP,
IpeIHAa3HAYeHHOW I F€HEPALMK NPSIMOYTOJIbHBIX KOJIEOAHMIA.
3arpy3uTh IpOrpaMmy B CUMYJISITOP U U3YUUTh UCIIOJIb30BAHKE
PErHCTPOB IPOLIECCOPA U UX U3MEHEHHE B MPOIECCe padOThl IPOrPAMMBI.

2.2. Moaudunmposats nporpammy MEANDR.DSP tak, 4To0b! Ha
BbIXoji€ [{AII
TC€HEPUPOBAIINCH:

Beixoa LIAII1 - npsiMoyroibHbIE UMITYJIBCHI, IIEPETHUN (GPOHT KOTOPHIX
COBMAJAET C HAYaJIOM BO3pACTAIOIIEH YacTH TPEYTOIbHBIX KOJeOaHuii Ha
[IAII2, a 3aaHMI GPOHT - C HAYATIOM CIIAJAIONIEH YaCTH TPEYTOIbHBIX
KOJIeOaHUI.

61

Pazmax: or 0 pmo 0.5 qmana3zoHa

(Ucxons u3 Toro, uro moaHbiid quanazoH LIAII sxksuBanenTen -1..1)
Boixon LIAII2 - TpeyronbHbie KoJaeOaHus (HAKIOHHBINA BO3pacTarouIuil
y4acTOK, 3aT€M HAKJIOHHBIN CIa a0l y4acTOK | T.1I.).

Pa3zmax (¢ TouHOCTBIO HE XyXk)e 1%): 25%..75% nunanazoHa
JUIMTensHOCTh BO3pacTaromiei yactu (¢ ToyHocThio 1%): 5 Mc
JIMUTeNnbHOCTH Cliajiatoliei 4acTu (¢ ToYHOCThIO 1%): 13 mc

2.3. IlpoBeputh pabOTOCTIOCOOHOCTH MPOTPAMMBI HA CUMYJISITOPE.
OTKOMIIUIIUPOBATH U CKOMIIOHOBATH MIPOTPaMMYy.
OTnaguTh MPU TOMOIITU CUMYJIATOPA.

2.4. 3arpy3uTth nporpammy B 1labopatopHoe yctporictBo EZKIT-Lite
Y U3YUYUTH MOJy4YaeMbl€ Ha BBIXOJIE YCTPOUCTBA CUTHAIIBI
IIpU TOMOIIM ocuuiorpada.

2.5. IlpumymaTh ¥ peanu30oBaTh aJrOpUTM I TeHEPAlUH TPEYTOIbHBIX
Kos1e0aHUii ¢ 3a/laHHBIMU TTapaMeTpaMu ¢ TouHOCThIO 0.01%.
Ucnonwsyiite npencraienue yucen "fractional" (npo6HOE) Kak s

nojicueTa TeKyiei "dasbl", Tak U 715 3ajaHUs pa3Maxa KoeOaHuu.
[TosTOpUTE 11 2.3, 2.4.

3. Metoanuyeckue yKazaHusl.
3.0. MecTonaxoxieHue (paios.
®ailnbl, HEOOXOIUMBIE /1JIs1 BHIIIOJIHEHUS TA00pAaTOPHOM pabOThI,
HaxomaTcsa Ha qucke H:, B monkaranore LAB2. Ecan na aucke H:
HeT nojkaranora LAB2, Heo6xoauMo cKoupoBaTh OJTHOMMEHHBIH
KataJyior ¢ qucka J:. B manpHeimem mo ymondanuto Oyaer
M0JIpa3yMeBAThCs, YTO TEKYIIUM Katanorom sieisiercss H:\LAB2\.
3.1. 3anmyck cuMymsTOpa OCYLIECTBIAECTCS KOMaHI0M
sim2181 -a ezkit It -e ¢aitn-nporpaMmmer
Hcnonp3yiiTe KOMaHIHBIN (halii IS 3aImycKka CUMYJISITOpA.

JI1s1 OCBOECHUS CUMYIISITOPA UCIIONb3yiTe BCTpoeHHYI0 HELP-cucremy.

Jliist u3yueHus paboThl MPOrpaMMbl UCIIOJIb3YHTE OKHA:
62

- Program Memory

- Data Memory

- Computational Registers
- SPORT Registers

3.2. PepakTupoBaHue TeKCTa MPOrpaMMbl MOKHO ITPOU3BOAUTD
BCTPOEHHBIM pefakTopoM oboouku Norton Commander,
1160 penaktopom TekcToB NE.

Komnustsiius nmporpaMmsel OCYIIECTBIISETCS KOMAHIOU:

asm21 ums-gaiina -2181

Kommonoska:

1d21 ums-¢aiina -a ezkit It -e ums-gaiina -x -g

Ucnonw3yiiTe koMaHIHBIN (Dailsl 1711 KOMIWISIIIUKA 1 KOMIIOHOBKH
IIPOrPaMMBL.

3.3. 3arpy3ka ckomnonoBaHHo# niporpammbl B EZKIT Lite
IPOU3BOAUTCS

P MIOMOIIH MPOTPAMMBI-MOHHUTOPA, KOTOPAs 3aIlyCKaeTCs MO/
ynpasiienneMm cucteMbl Windows.

3anyck Windows ocyIiecTBIIsICTCS KOMaHI0W win.

4. PexoMeHaauu Jist BHIIOJHEHUS 3aJaHUS:

JUist 03HAKOMIICHUS C IPUHIIUTIOM JEHCTBHS MPOTPaMMbl U3YUUTE €€
paboTy B CUMYJIATODE.

Monu¢ukanuo nporpaMMbl peKOMEHIYETCsl IPOU3BOIUTH B TOM YacTH,
KOTOpasi o0ecreynBaeT reHepaLnio MeanIpa, a TakXKe B 4acTH,
UHUIHATN3UPYIOIIEH IepeMeHHbIE MeaHpa.

JUJ1s1 BBIUMCIICHUSI MTHOBEHHOTO 3HaYEHHSI TEKYIIETO HAKIIOHHOTO
y4JacTKa MO>KHO BOCTIOJIB30BAThCS OIEpallieil yMHOKEHHUS, UCIIONB3YS B
Ka4yecTBE MapaMeTpOB HaualbHOE 3HAYCHHUE HANPSHKEHUS! HAKIIOHHOTO
ydJacTKa, HOMEp OTCUETa OTHOCHUTENIBHO Havyajia TeKyIlero HaKJIOHHOTO
ydacTka U TpedyeMoe U3MEHEHHE HapsDKEHUs 32 BpeMsl OJHOrO OTCUeTa.

5. Bonpocsl.

5.1. Ilouemy Ha ocumiutorpade He BUJIHA CTYIEHYATOCTh TPEYTOJIbHOTO
konebanus? [louemy npu reHepalnuu MeaHipa BUAHBI APKO BBIPAKEHHbBIE
KoJIe0aHUs Ha BEPIIMHAX UMITYJIbCOB JI0 U TIOCe PPOHTOB?

6. JIonoJIHUTEIbHOE 3aJaHHUe

Moaudunupyiite nporpammy c 10 TeHepaluu
3alMKJIEHHOW MOCJIE0BATEIBHOCTH U3 HECKOJIBKUX YUYaCTKOB
PAa3IMYHOIO HAKJIOHA U PA3JIMYHOU JJIMTEIBHOCTH.

63

{**
Kk khkkhkK k) *k*%

*

* This sample program is organized into the following
sections:

Assemble time constants
Interrupt vector table

ADSP 2181 intialization

ADSP 1847 Codec intialization
Interrupt service routines

* % % %

Rk b 2 g db db ab b b b b b b db db 4b Ib b b b b b b d db db 9b Ib b b b b b b d db db Ib I b (b b b i b Jh db db Sb b b b b b g 3

XKk kAR KkKk KKK

.module/RAM/ABS=0 loopback;

{**
XKk khk kKA kKK
*

* Assemble time constants
*

R e A AR e db I b b b e db g db db Ib b b b b i S db dh db db i b b g S i S S A AR S b b b b S i 2 dh db S I b b g b 4

Xk kk Kk kKKK

.const IDMA= 0x3fel;
.const BDMA BIAD= 0x3fel;
.const BDMA BEAD= 0x3fe2;
.const BDMA BDMA Ctrl= O0x3fe3;
.const BDMA BWCOUNT= 0x3fed;
.const PFDATA= 0x3feb;
.const PFTYPE= 0x3feb;
.const SPORT1 Autobuf= O0x3fef;
.const SPORT1 RFSDIV= 0x3ff0;
.const SPORT1 SCLKDIV= 0x3ffl;
.const SPORT1 Control Reg= 0x3ff2;
.const SPORTO Autobuf= 0x3ff£3;
.const SPORTO RFSDIV= 0x3ff4;
.const SPORTO SCLKDIV= 0x3ff5;
.const SPORTO Control Reg= 0x3ff6;
.const SPORTO TX ChannelsO= 0x3ff7;
.const SPORTO TX Channelsl= 0x3ff8;

64

0x3ff9;
O0x3ffa;
0x3ffb;
O0x3ffc;
0x3ffd;
Ox3ffe;
O0x3fff;

; /* Status + L data +

/* Cmd + L data + R

{ Status: 1 - init, O

.const SPORTO RX Channels0O=
.const SPORTO RX Channelsl=
.const TSCALE=

.const TCOUNT=

.const TPERIOD=

.const DM Wait Reg=

.const System Control Reg=
.var/dm/ram/circ rx buf[3]
R data */

.var/dm/ram/circ tx buf[3];
data */

.var/dm/ram/circ init cmds[13];
.var/dm stat flag;
- wrk }

.var time;
.var time max;

.var/circ meandr values[4];

5,16384, 5;

0x0000; /* Initially set MCE

Left input control reg

line 1
aux 1
line 2
line 1 post-mixed loopback

res
left input gain x 1.5 dB

Right input control reg

.init time: O0;
.init meandr values: -16384,
.init tx buf:0xc000, 0x0000,
* / -
.init init cmds:
0xc002, {
b7-6: 0=left
1=1left
2=left
3=left
b5-4:
b3-0:
}
Oxcl02, {
b7-6:
2=right
loopback
b5-4: res
b3-0:
}
0xc288, {

O=right line 1

l=right aux 1
line 2

3=right line 1 post-mixed

right input gain x 1.5 dB

left aux 1 control reg

b7

l=left aux 1 mute

65

b6-5: res
b4-0: gain/atten x 1.5, 08= 0dB,
00= 12dB
}
0xc388, {
right aux 1 control reg
b7 l=right aux 1 mute
b6-5: res
b4-0: gain/atten x 1.5, 08= 0dB, 00= 12dB
}
0xc488, {
left aux 2 control reg
b7 l1=1left aux 2 mute
b6-5: res
b4-0: gain/atten x 1.5, 08= 0dB,
00= 12dB
}
0xcb88, {
right aux 2 control reg
b7 l=right aux 2 mute
b6-5: res
b4-0: gain/atten x 1.5, 08= 0dB,
00= 12dB
}
Oxc680, {
left DAC control reg
b7 l1=left DAC mute
b6 res
b5-0: attenuation x 1.5 dB
}
0xc780, {
right DAC control reg
b7 l1=right DAC mute
b6 res
b5-0: attenuation x 1.5 dB
}
Oxc85¢c, {
data format register
b7 res
b5-6: 0=8-bit unsigned linear PCM
1=8-bit u-law companded
2=16-bit signed linear PCM
3=8-bit A-law companded
b4 O=mono, l=stereo
b0-3: 0 8.
1= 5.5125
2= 16.
3= 11.025
4= 27.42857
5= 18.9
6= 32.

66

7= 22.05

8= .
9= 37.8
a= .
b= 44.1
c= 48.
d= 33.075
e= 9.6
f= 6.615
(bO0) : O0=XTAL1l 24.576 MHz; 1=XTAL2
16.9344 MHz
}
0xc909, {
interface configuration reg
b7-4: res
b3 : l=autocalibrate
b2-1: res
b0 : I1=playback enabled
}
Oxca00, {
pin control reg
b7 : logic state of pin XCTL1
b6 : logic state of pin XCTLO
b5 : master - l=tri-state CLKOUT
slave - x=tri-state CLKOUT
b4-0: res
}
Oxcc40, {
miscellaneous information reg
b7 : 1=16 slots per frame, 0=32 slots
per frame
b6 : 1=2-wire system, 0O=l-wire system
b5-0: res
}
Oxcd00; {
digital mix control reg
b7-2: attenuation x 1.5 dB
bl : res

b0 : 1=digital mix enabled
}

KAKA KA A KA KR A A KA AR A AR AR A A I AR AR h A A dA A A Ak kA hk b hk Ak khhkkx %k
* ok Kk ok Kk kKK

*

* Interrupt vector table

*
KA KA KR AR KR AR AR I AR A AR A AR A R AR I AR AR I AR A A A A A A Ak A kA hkhA Ak kA kA hkk k%
*kk kK Kk k kK

Jump start; rti; rti; rti; {00: reset }
rti; rti; rti; rti; {04: IRQ2 }
rti; rti; rti; rti; {08: IRQL1 }
rti; rti; rti,; rti; {0c: IRQLO }

67

Jjump next tx;

rti; rti; rti;
jump input samples;

rti; rti; rti;

Jjump irge; rti; rti; rti;

rti; rti; rti,; rti;

rti; rti; rti; rti;
IRQ1 }

rti; rti; rti,; rti;
IRQO 1}

rti; rti; rti; rti;

rti; rti; rti,; rti;

{10:
{14:
{18:
{1lc:
{20:
{24:

{28:
{2c:

SPORTO tx }
SPORT1 rx }
IRQE }

BDMA }
SPORT1 tx or

SPORT1 rx or

timer }
power down }

Rk 2 S AR db db b b b b 2b g db db Ib b b b b b S 2 SR db Ib b b b b b i S 2 dh Ib I b b b b S S S 2b db Ib I b b b b S 3

Xk Kk Kk kKX k%K
*

* ADSP 2181 intialization

*

Rk b g g db db Ib b b b b b g db db db Sb b b b b b b d db db 9b Ib b b b b b b g db db 2b S b (b b b i b S db db Sb b b b b b g 3

XKk kAR KKk KKK

start:
10 = "“rx buf;
10 = %rx buf;
11l = ~tx buf;
11 = %tx buf;
13 = "init cmds;
13 = %init cmds;
i4 = "meandr values;
14 = Smeandr values;
ml = 1;
m5 = 1;

{ DAC wvariables init }

ar = dm (i4,m5);
dm (tx buf+l) = ar; { DACl value }
dm (tx buf+2) = ar; { DAC2 wvalue }
ar = dm (i4,m5);
dm (time max) = ar;
(s====== SERIAL PORT #0 S TUTFTF
———————————)
ax0 = b#0000001010000111; dm (SPORTO Autobuf) = axO0;
{ [11YI=/Y/1=/1/|+- receive autobuffering O=off,
1=on
[T [| +-- transmit autobuffering 0O=off,
1=on
11 ' | +---— | receive m?
I T O | ml
I T T R ! receive 1i?
[! 110
ey ! !
[1]!] +4========= | transmit m?
11 | ml
T I e ! transmit 1i?

68

! 1 il
! !
+============= |BIASRND MAC biased rounding

[|+ 0
| +-—————————————— | CLKODIS CLKOUT disable
control bit
- 0 }
ax0 = 0; dm (SPORTO_RFSDIV) = ax0;
{ RFSDIV = SCLK Hz/RFS Hz - 1 }
ax0 = 0; dm (SPORTO SCLKDIV) = axO0;

{ SCLK = CLKOUT / (2 (SCLKDIV + 1) }

ax0 = b#1000011000001111; dm (SPORTO0 Control Reg) =
ax0;
{ multichannel

| |+-=/1'||+/+--=-/ | number of bit per word - 1

1] U] | = 15

1 RN |

1 RN l

[1] | !| |+====== | O=right just, 0-fill;
l=right just, signed

[1] [1] ! 2=compand u-law; 3=compand
A-law

[1] [V |+ receive framing logic O=pos,
l=neg

[1] I transmit data valid logic
O=pos, 1l=neg

[1] | +========= RFS 0O=ext, l=int

[]] Fm————— multichannel length 0=24, 1=32
words

| [+ === | frame sync to occur this

[| cycle before first bit
| |

I |
[+=—m ISCLK 0O=ext, 1l=int

t-—-—-—-———— multichannel O=disable,
l=enable}

!'+---/ | number of bit per word - 1

n-multichannel
L]
N = 15
LT
LT

69

[11Y]]]!]]]+===== !0=righ just,0-fill;l=right
just, signed

[Ty +4=-——- ! 2=compand u-law; 3=compand
A-law

[T == receive framing logic O=pos,
l=neg

[= transmit framing logic 0O=pos,
l=neg

| || 1]||+========= RFS 0O=ext, l=int

[T] [+ TFS O=ext, 1l=int

[+ TFS width 0=FS before
data,1=FS in sync

[+ TFS O=no, l=required

| | | t============= RFS width 0=FS before
data,1=FS in sync

[[+-————— = RFS 0O=no, l=required

[+————— ISCLK O=ext, 1l=int

t-————————————— multichannel 0O=disable,
l=enable }

ax0 = b#0000000000000111; dm (SPORTO TX ChannelsO)
= ax0 { ~15 oo~
transmit word enables: channel # == bit # }
ax0 = b#0000000000000111; dm (SPORTO TX Channelsl)

= ax0;

{ ~31 16"
channel # == bit # }
ax0 = b#0000000000000111;
(SPORTO_RX Channels0) = ax0;
{ ~15 00"
channel # == bit # }
ax0 = b#0000000000000111;
(SPORTO_RX Channelsl) = ax0;
{ ~31 167
channel # == bit # }

{=== S YSTEM A N D

ax0 = b#0000111111111111;

[4=]4=] 44/~

\
P

| +-
I
I
I
I
I
I
I
I
I
I

MEMORY

transmit word enables:

dm
receive word enables:
dm

receive word enables:

S TUTFTF

dm (DM Wait Reg) =

! TOWAITO

| IOWAITI

! TOWAIT?2

| IOWAIT3

| t=============== | DWAIT

ax0 = b#0001000000000000; dm

(System Control Reg) = axO0;
{ =/ [+===== /+-/- | program memory wait
states
RN | O
[Y] |
I M A= 0
I 0
N 0
N 0
U 0
I 0
I 0
| M+ SPORT1 l=serial port,
0=FI, FO, TRQO, IRQIL,..
| - SPORT1 l=enabled,
O=disabled
| t+============= SPORTO l=enabled,
O=disabled
b 0
0
0 }
ifc = b#00000011111111; { clear pending
interrupt }
nop;
icntl = b#00000;
{ [1l1+= | IRQO: O=level, l=edge
[]]+-= | IRQ1l: O=level, l=edge
| |[+=== | IRQ2: O=level, l=edge
|+---- 0

| ————-— | IRQ nesting: O=disabled,
l=enabled
}

mstat = b#1000000;
{ [111l1+- |Data register bank select
|11l 1+=-- |FFT bit reverse mode (DAGI)
||| |+--—- |ALU overflow latch mode,
l=sticky

|| |+-—--- |AR saturation mode,
l=saturate, O=wrap

| | +—-—=-—- | MAC result, O=fractional,
l=integer

| +=——=—— | timer enable

71

o | GO MODE }

R e R G AR A db I b b b i db g db db db i b b b i S db dh db I b b b b S S S 2 A AR S b b b b S i 2 db db I I b b g b 4
*kkhk Kk Kk kK)%k

*

* ADSP 1847 Codec intialization

*
R 2 g IR db db b b b b b 2b g db db b b b b b b S 2 SR db Ib b b b b b S S 2 dh Ib I b b b b S S S 2b db Ib I b b b b 3
Xk kk Kk kKKK

{ clear flag }

ax0 = 1;
dm(stat flag) = ax0;
{ enable transmit interrupt }
imask = b#0001000000;
{ LI+ | timer
[1111111+= | SPORT1 rec or IRQO
[1|1l]|+-= | SPORT1 trx or IRQ1
[11l]l+=---— | BDMA
11 1]+==== 1 IRQE
1] | +===== | SPORTO rec
||| +=——=——= | SPORTO trx
| [+-—————- | TRQLO
| +=——————— | IRQL1
tomm | IRQZ2}
ax0 = dm (il, ml); { start interrupt }
tx0 = ax0;
check init:
ax0 = dm (stat flag); { wait for entire
init }
af = pass ax0; { buffer to be sent
to }
if ne jump check init; { the codec
}
ay0 = 2;
check acil:
ax0 = dm (rx buf); { once initialized, wait
for codec }
ar = ax0 and ayO0; { to come out of
autocalibration }
if eq jump check acil; { wait for bit set }
check aciZ:
ax0 = dm (rx buf); { wait for bit clear
}
ar = ax0 and ayO0;

i1f ne jump check aciZ2;
72

idle;

ay0 = 0xbf3f; { unmute left DAC }
ax0 = dm (init cmds + 6);

ar = ax0 AND ayO0;

dm (tx buf) = ar;

idle;

ax0 = dm (init cmds + 7); { unmute right DAC }
ar = ax0 AND ayO0;

dm (tx buf) = ar;
idle;
ifc = b#00000011111111; { clear any pending
interrupt }
nop;
imask = b#0001010000; { enable tx0 & irge
interrupt }
{ LI+ | timer
[11111ll+= | SPORT1 rec or IRQO
[111]1]|+-- | SPORT1 trx or IRQ1l
1111 +===1 BDMA
[Tl 1+==== 1 IRQE
[+=== | SPORTO rec
[|| +=————= | SPORTO trx
| | +==—————- | IRQLO
| +=——————— | TRQL1
tomm | IRQ2}
{ wait for interrupt and loop forever }

talkthru: idle;
Jjump talkthru;

{**
)k Kk Kk k) kK

* Interrupt service routines
Ak khkkhhhkkhkhhkhkkhkhhkhkkhhhhkhhhhkkhkhhhkhkhhhkhkhhhdhkhhhdhhhhhkkhhkhrhkhhkhrhkhkhhkkk

XKk k kKR Kk %k

receive interrupt is not used}
input samples:
rti;

transmit interrupt used for Codec initialization, and
Data generating

next tx:

ena sec_reg;

ar = dm (stat flag);

ar = pass ar;

if eq jump next data;
{ init Codec }

ax0 = dm (i3, ml); { fetch next control
word and }

73

dm (tx buf) = ax0; { place in transmit slot
0 }

ax0 = 1i3;

ay0 = "init cmds;

ar = ax0 - ay0;

if gt rti; { rti if more control words still
waiting }

ax0 = 0xaf00; { else set done flag and
}

dm (tx buf) = ax0; { remove MCE if done
initialization }

ax0 = 0;

dm (stat flag) = ax0; { reset status flag }

rti;

next data:
ay0 = dm (time);
ayl = dm (time max);
ar = ay0+1;
af = ayl-ar;
if gt jump calc;
{ change meandr variables }

ar = dm (i4,m5);

dm (tx buf+l) = ar;

dm (tx buf+2) = ar;

ar = dm (i4,mb5);

dm (time max) = ar;

ar = 0; { reset time }
calc:

dm (time) = ar;

rti;

{ INTERRUPT button service - indicator FL1 flashing}
irge: toggle f1l1;
rti;

.endmod;

74

