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Л А Б О Р А Т О Р Н А Я  Р А Б О Т А  № 9  

      ТЕОРИЯ ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЕЙ  

В ПРИБЛИЖЕНИИ А 

 

Одномерная каскадная теория в приближении А 

Цель упражнений  1 состоит в ознакомлении с основными 
процессами взаимодействия электронов∗ и фотонов больших 
энергий с веществом, которые приводят к возникновению 
электронно-фотонных каскадных ливней, и в изучении методов 
решения интегро-дифференциальных уравнений электромагнитной 
каскадной теории ливней путем использования интегральных 
преобразований Лапласа и Меллина. 

При прохождении через вещество электроны и фотоны 
больших энергий участвуют в процессах тормозного излучения 
(электроны), образования пар (фотоны), испытывают 
ионизационные потери (электроны) и комптон-эффект (фотоны). 
Кроме того, электроны испытывают кулоновское рассеяние на ядрах 
атомов среды**. В области больших энергий основную роль играют 
процессы тормозного излучения электронов и образования 
электронно-позитронных пар фотонами. Тормозясь в поле ядра, 
электрон создает фотон с энергией, сравнимой по порядку величины 
с энергией первичного электрона. Фотон такой энергии может 
образовать электронно-позитронную пару или испытать 
комптоновское рассеяние. Образовавшиеся электроны в процессе 
тормозного излучения снова испускают фотоны и т. д. Вследствие 
этого в веществе вместо одного первичного электрона или 
первичного фотона с энергией Е0 образуется большое количество 
фотонов и заряженных электронов обоих знаков, составляющих так 
называемый электронно-фотонный каскадный ливень. При 
прохождении такого ливня через вещество одновременно с 
рождением частиц происходит дробление их энергии, которое будет 
продолжаться до тех пор, пока энергия возникающих вторичных 
                                                           
∗Здесь и далее под электронами больших энергий будем понимать и 
электроны и позитроны. 
** В данном параграфе нас интересует распределение частиц только по 
энергиям Е и по глубине t слоя вещества. Процесс кулоновского рассеяния, 
приводящий к появлению распределения частиц по углам θ с осью ливня, в 
дальнейшем рассматривать не будем. 
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частиц не приблизится к некоторой критической энергии для 
данного вещества β. После этого заряженные частицы будут терять 
основную часть своей энергии на ионизацию среды, общее число 
частиц в ливне будет уменьшаться и ливень постепенно истощится. 

Поведение ливневых электронов и фотонов в веществе 
описывается системой двух интегро-дифференциальных уравнений, 
которые являются основными уравнениями электромагнитной 
каскадной теории. Приведем вывод этих уравнений для области 
очень больших энергий ливневых частиц E>>β, когда 
ионизационными потерями частиц можно пренебречь. Пусть 
P(E0, E, t) и Г(E0, E, t) - функция распределения соответственно 
электронов и фотонов с энергией Е в интервале Е, Е +dЕ на глубине 
t слоя вещества в ливне с полной энергией Е0. При прохождении 
частицами ливня пути dt в веществе их число в энергетическом 
интервале Е, Е +dЕ будет меняться из-за следующих эффектов: 

а. Фотоны с энергией Е' ≥ Е в результате образования 
электронно-позитронных пар дадут 

∫
∞

′′′
E

E,E)dE(p,t)WE,Γ(EdEdt 02     (1) 

электронов в интервале энергий Е, Е +dЕ. 
б. Электроны с энергией Е' ≥ Е вследствие тормозного 

излучения образуют 

∫
∞

′−′′′
E

EdEEEeWtEEPdEdt ),(),,0(     (2) 

электронов. 
в. В результате тормозного излучения теряют энергию и 

покидают данный энергетический интервал 

∫ ′′−
E

EdEEeWtEEdEdtP
0

),(),,0(     (3) 

электронов. Заметим, что интегралы (2) и (3) расходятся, однако 
их разность остается конечной величиной. 

г. Электроны с энергией Е' ≥ Е вследствие тормозного 
излучения образуют 

∫
∞

′′′
E

EdEEeWtEEPdEdt ),(),,0(     (4) 

фотонов в интервале энергий Е, Е +dЕ. 
д. В результате образования пар уходят из данного 

энергетического интервала 
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∫ ′′′Γ−
E

EdEEpWtEEdEdt
0

),(),,0(     (5) 

фотонов. 
В рассмотренных выше интегралах функция EdEEWe ′′),(  

описывает вероятность тормозного излучения электроном с 
энергией Е фотона с энергией Е' на единице пути в веществе, а 
функция  - вероятность образования фотоном с dEEEWp ),( ′
энергией Е' в поле ядра электронно-позитронной пары с энергией 
позитрона Е и электрона Е' - Е на единице пути в веществе. 
Упрощенные выражения этих вероятностей в приближении полного 
экранирования на одной радиационной единице длины пути в 
веществе имеют вид  

E
EEeW

′
=′

1),( ,  
E

EEpW
′

=′ 0),(
σ

   (6) 

где σ0 – полный коэффициент поглощения фотонов на одной 
радиационной единице длины t0. 

Учитывая эффекты а – д, запишем основные уравнения 
электромагнитной каскадной теории для функций распределения 
P(E0, E, t) и Г(E0, E, t) в виде 

 

,
0

),(),,0(

),(),,0(),(),,0(2
),,0(

∫ ′′−

−∫
∞

′−′′′+∫
∞

′′′Γ=
∂

′∂

E
EdEEeWtEEP

E
EdEEEeWtEEP

E
EdEEpWtEE

t

tEEP

 

∫ ′′Γ−

−∫ ′′′=
∂

Γ∂

E
EdEEpWtEE

E
EdEEeWtEEP

t

tEE

0
),(),,0(

0
),(),,0(

),,0(

   (7) 

 

Будем искать аналитические выражения функций Р и Г 
методом интегральных преобразований Лапласа по переменной t и 
Меллина по переменной Е. Преобразование Лапласа определяется 
как интеграл 
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∫
∞ −=
0

),,0(),,0( dttetEEPEEP λλ     (8) 

 
где λ - комплексный параметр. В общем случае функция Р(λ) 
определена в полуплоскости справа от прямой, параллельной 
мнимой оси. 

Важным свойством преобразования Лапласа является то, что 
при не очень ограничивающих условиях соответствие между Р(t) и 
Р(λ), установленное формулой (8), однозначно: существует только 
одна функция Р(t), для которой Р(λ) является ее интегралом 
Лапласа. Если известна функция Р(λ), называемая трансформантой 
Лапласа, то функцию Р(t) можно определить при помощи формулы 
обратного преобразования Лапласа 

 

∫=
C

dteP
i

tP λλλ
π

)(
2
1)(     (9) 

где контур интегрирования С есть прямая, параллельная мнимой оси 
и расположенная в полуплоскости сходимости функции Р(λ). 

Аналогично преобразуется функция ( )tEE ,,0Γ . В результате 
применения преобразования Лапласа по переменной t к уравнениям 
(7) получим систему двух уравнений для трансформант Лапласа Р, Г 
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∞
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(10) 
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Подставим явные выражения сечений основных процессов (6) и (10) 
и применим к системе (10) преобразование Меллина по переменной 
Е. Преобразование Меллина определяется как интеграл 

 

∫
∞

=
0

),,0(),,0( dEsEEEPsEP λλ ,  

 (11) 
где s – комплексный параметр. Если этот интеграл расходится на 
нижнем пределе при s = sа, то он расходится и при всех значениях s, 
для которых Re(s)<Re(sа). Если интеграл Меллина сходится, то 
область его сходимости представляет собой полосу, ограниченную 
двумя прямыми, параллельными мнимой оси. 

Преобразование Меллина, как и преобразование Лапласа, 
однозначно и может быть обращено по формуле 

 

∫
+−=
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dssEsP
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π

,    (12) 

 

где контур интегрирования С представляет собой прямую, 
параллельную мнимой оси и расположенную внутри полосы 
сходимости. 

Применяя преобразование Меллина по переменной Е, к 
системе уравнений (10), последовательно получаем: 
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где 
 

( )[ ]
v
v1

0
v11)( dssA ∫ −−= ;   

1
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)(
+

=
s

sB
σ

; 
s

sC 1)( =   (14)*

 
В результате получим систему уравнений для функций P(E0, s, λ) и 
Г(E0, s, λ) в виде 
 

=+∫
∞

=− ),,0(
0

)0,,0( λλ sEPdEtEEPsE  

 
),,0()(),,0()( λλ sEsBsEPsA Γ+−= , 

 

=Γ+∫
∞

=Γ− ),,0(
0

)0,,0( λλ sEdEtEEsE  

 
),,0(0),,0()( λδλ sEsEPsC Γ−= .    (15) 

 
Для решения системы (15) необходимо выбрать граничные 

условия. Если на границу полубесконечного слоя вещества падает 
первичный электрон с энергией E0, то граничные условия можно 
записать в форме 

)0()0,,0( EEtEEP −== δ ,  0)0,,0( ==Γ tEE   (16) 

где )( 0 EE −δ  - дельта-функция Дирака. Поскольку 

sEdEEEsEdETEEPsE 0
0

)0(
0

)0,,0( =∫
∞

−=∫
∞

= δ , 

0
0

)0,,0( =∫
∞

=Γ dEtEEsE ,    (17) 

то, подставляя (16) в (15), получаем 

                                                           
* Если для сечений We(E′, E) и Wp(E′, E) использовать более точные выражения, чем (6), то 
численные значения функций A(s), B(s) и C(s) в интересующем нас интервале значений s 
несколько изменятся, однако для простоты можно ограничиться формулами (14) для 
проведения численных расчетов. 



),,,0()(

),,0()(),,0(0
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),,0(0),,0()(),,0( λσλλλ sEsEPsCsE Γ−=Γ .   (18) 

Решая систему (18), получаем 
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sEsCsE
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λ
Ψ+

=Γ   (19) 

где функция )/()()()(),( 0σλλλ +−+=Ψ sCsBsAs  - известная функция 
каскадной теории. Ее можно представить в виде 
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s    (20) 

где λ1(s) λ2(s) – корни уравнения Ψ(λ,s)=0. Используя (20), 
выполним обратное преобразование Лапласа 
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Вычисляя интеграл (21) по полюсам λ=λ1(s) и λ=λ2(s), получаем 
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Аналогично 
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В области глубин t>1 членами с })(exp{ 2 tsλ  в формулах (22) и (24) 
можно пренебречь. 

Применим теперь к функциям  и ),,( 0 tsEP ),,( 0 tsEΓ  обратное 
преобразование Меллина 

∫
∞+

∞−

+
=
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tsEEs
esH

E
ds

i
tEEP
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2
1),,0(

λ

λλπ
        (25) 

Для вычисления контурных интегралов (25) можно использовать так 
называемый метод перевала. Будем считать, что 
предэкспоненциальные множители в подынтегральных функциях 
(25) слабо зависят от s, что справедливо при достаточно больших 
значениях t. Можно утверждать, что при таком предположении 
получим первый член разложения решения по обратным степеням t. 
Рассмотрим функцию 

tsEEstsEE )(1)/0ln(),,,0(0 λϕ += .   (26) 

При s→0 функция ϕ→∞ так как λ1(0)→∞; при s→∞ функция ϕ0 
также стремится к ∞. Следовательно, функция ϕ0 имеет минимум 
при некотором действительном положительном значении s. Это 
значение определяется из уравнения ∂ϕ0/∂s=0 или, в раскрытом виде, 
из условия 

0)(1)/0ln( =′+ tmsEE λ     (27) 

Перенесем контур интегрирования так, чтобы он проходил через 
точку sm. Если функция ϕ0 имеет минимум в точке sm при изменении 
переменной вдоль действительной оси, то и в этой же точке sm 
функция ϕ0 будет иметь максимум при изменении переменной вдоль 
перпендикулярной оси. Это свойство следует из того, что 
аналитическая функция ϕ0 удовлетворяет уравнению 

02
0

2

2
0

2
=

∂

∂
+

∂

∂

zx

ϕϕ
    (28) 

где 
izxmss ++=     (29) 

Разложим функцию ϕ0 в ряд по степеням  и 
ограничимся первыми двумя неисчезающими членами разложения: 

mssiz −=

 9



)(02

2
)(00 msz

ms ϕϕϕ ′′−=     (30) 

Следующие члены дают поправку порядка 1/t, и поэтому здесь ими 
можно пренебречь. Подставим разложение (30) в (25) и получим: 
 

2/1})(12{1
})(1exp{0)(1),,0(

tssE

tssEsH
tEEP
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λ
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=  
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λ

′′−+
=Γ   (31) 

 
В выражениях (31) переменные E0, Е, s и t связаны условием 
перевала 

0)()/ln( 10 =′+ tsEE λ    (32) 

Формулы (31) и (32) позволяют рассчитать функции 
распределения электронов и фотонов по энергии Е на различных 
глубинах t слоя вещества в случае ливня, образованного первичным 
электроном с энергией Е0. Рассмотренным выше методом можно 
провести расчеты и для ливня, образованного первичным фотоном с 
энергией Е0. В последнем случае граничные условия следует взять в 
виде 

0)0,,0( ==tEEP  

)0()0,,0( EEtEE −==Γ δ    (33) 

 
В качестве упражнений следует провести расчеты 

зависимостей {Р(Е0, Е, t)}P,Γ или {Г(Е0, Е, t)}P,Γ от глубины t для 
заданного значения величины Е0/Е, или же соответствующих 
интегральных по Е функций {NР,Γ (Е0, Е, t)} P,Γ  здесь верхний индекс 
Р означает первичный электрон, верхний индекс Г – первичный  
фотон). 

Упражнение 1. Рассчитать зависимости от глубины t числа 
частиц с энергией Е, Е +dЕ в ливне от первичной частицы с 
энергией Е0 при заданной величине Е0/Е: 

 
{Р(Е0, Е, t)}P , {Г(Е0, Е, t)}P, {NР (Е0, Е, t)} P, {NΓ (Е0, Е, t)} Γ ,  
{Р(Е0, Е, t)}Γ, {Г(Е0, Е, t)}Γ, {NР (Е0, Е, t)} Γ , {NΓ (Е0, Е, t)} Γ 
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Упражнение 2. Решить систему (7), добавив в правые части 

уравнений функции источника вида: 
 
а) )0(),( EEtEps −= δ , )0(),( EEtEs −=Γ δ  

б) teEEtEps µδ −−= )0(),( , teEEtEs µδ −−=Γ )0(),(  

в) , ),(),( tEpftEps = ),(),( tEftEs Γ=Γ  

Упражнение 3. Решить систему (7) для граничных условий в 
форме: 

1/1)0,,0(
s

EtEEP ==  при E>E1 и 0 при E<E1

1/1)0,,0(
s

EtEE ==Γ  при E>E1 и 0 при E<E1

 
Упражнение 4. Решить систему (7) с граничными условиями 

упр. 3 а) с добавлением функций источника упр. 2. б). Определить 
«равновесный» спектр, исследовать его поведение при различных 
соотношениях между µ и s1. 

  Угловое распределение частиц в электронно-
фотонном ливне 

 
При движении в веществе лавинные частицы отклоняются от 

направления движения первичной частицы за счет каскадных 
процессов радиационного торможения и образования пар. Углы 
отклонения при этих процессах по порядку величины равны тс2/Е, 
где Е – энергия первичной частицы. Заряженные частицы 
отклоняются из-за резерфордовского рассеяния на ядрах атомов 
среды. Это отклонение гораздо больше отклонения из-за каскадных 
процессов, которыми можно пренебречь всюду, за исключением 
самого начала развития лавины. 

Запишем в приближении А основные уравнения каскадной 
теории, считая углы отклонения частиц малыми и рассматривая 
рассеяние как многократное [1, 2]. В приближении малых углов 
функции P, ),,,,( 0 yxtEE θθΓ  или P, ),,,,( 0 ϕθtEEΓ  есть функции Е0, Е, 
t, θ,  где 
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22
yx θθθ += , 

+Γ=
∂

∂
)],,,0(),,,,0([1

),,,0(
θθ

θ
tEEtEEPL

t

tEEP

),,,0(24

2
θθ tEEP

E
kE

∆+  

, 

)],,,0(),,,,0([2
),,,0(

θθ
θ

tEEtEEPL
t

tEE
Γ=

∂

Γ∂
,    (1) 

выражение для оператора Лапласа )(1
θ

θ
θθθ ∂

∂
∂
∂

=∆ . 

Здесь ),,,( 0 θtEEP , ),,,( 0 θtEEΓ  искомые функции 
распределения электронов и фотонов по энергии Е, глубине t 
(измеряемой в лавинных единицах) и углу отклонения от оси ливня 
θ (двумерный угол). Постоянная Ек = 21 Мэв, L1 и L2 - интегральные 
операторы, учитывающие процессы радиационного торможения и 
образования пар: 

[ ] ∫ ×′+∫ ′′′Γ=Γ
0

),(
0

),(),(2,1

E

E
tEP

E

E
EdEEpWtEPL  

∫ ′′−′−′′×
0

),(),(),(
E

E
EdEEeWEtPEdEEEeW , 

∫ −′′′=Γ
0

),(),(],[2

E

E
EdEEeWtEPPL  

∫ ′′Γ−
E

EdEEpWtE
0

),(),(     (2) 

Рассмотрим случай простейшего граничного условия, 
соответствующий одному первичному электрону, падающему 
вертикально на границу слоя вещества при t = 0. 
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Разложим функции Р(Е', t) и Γ(Е', t) по функциям Бесселя 

нулевого порядка, используя соотношения (преобразования 
Ханкеля) 

kdkkJktEEpDtEEP )(0),,,0(
0

),,,0( θθ ∫
∞

=  

где 

θθθθ dkJktEEPtEED p )(),,,(),,,( 00
0

0 ∫
∞

= . 

Здесь )(0 θkJ  - функция Бесселя нулевого порядка. 
Аналогичные соотношения запишем для функций Г и DΓ. 

Умножим уравнения (1) на θθ )(0 kJ  и проинтегрировав по θ от 0 до ∞ 
получим 

−⎥⎦
⎤

⎢⎣
⎡

Γ=
∂

∂
),,,0(),,,,0(1

),,,0(
ktEEDktEEpDL

t

ktEEpD
 

),,,0(24

22
ktEEpD

E

kkE
− , 

⎥⎦
⎤

⎢⎣
⎡

Γ=
∂

Γ∂
),,,0(),,,,0(2

),,,0(
ktEEDktEEpDL

t

ktEED
.  (3) 

Перейдем к трансформантам Лапласа по t. Умножим (3) на 
 и, проинтегрировав от t от 0 до ∞, получим te λ−

−=+
−−

Γ ],[),,,(
2

)(
10

0 DDLkEED
EE

pp λλ
π

δ
 

),,,0(24

22
kEEpD

E

kkE
λ− , 

],[2),,,0( Γ=Γ DpDLkEED λλ  

Исключив  из второго уравнения по формуле ΓD

∫ ′′′
+

=Γ
0

),(),,,(
0

1),,,0(
E

E
EdEEeWkEpEpDkEED λ

σλ
λ  

получим уравнение для  pD



)],,,0([),,,0(24

22

2

)0(
kEEpDLkEEpD

E

kkEEE
λλ

π

δ
=−

−
  (5) 

Здесь L - интегральный оператор, описывающий процессы 
радиационного торможения электронов и образования пар 
фотонами. 

−∫ ′′′−=
0

),,(),,,()],,,0([
E

E
EdEEKkEpEpDkEEpDL λλλ  

+∫ ′−′′−
0

),(),,,(
E

E
EdEEEeWkEpEpD λ  

),,,(
0

),(),,,( kEpEpD
E

EdEEeWkEpEpD λλλ ′+∫ ′′+ , 

где 

∫
+

′
=′

1

0

),(),(
2),,(

E

E
d

EpWEeW
EEK ε

σλ

εε
λ    (6) 

Умножим (6) на sE  и проинтегрируем по dE от E1 до E0. 
(Здесь s – некоторый, пока неопределенный комплексный параметр.) 
Изменив в некоторых двойных интегралах порядок интегрирования 
и обозначения E  на E ′  и  на 1E E , получим 

×∫ ′=∫ ′′′
0

),,,0(
0

)],,,0([
E

E
kEEpD

E

E
EdkEEpDLsE λλ  

EdsEE ′′× ),,,( λϕ , где 
 

+′−=′ ),,,(1),,,( sEEKsEE λλϕ  

sEsEEKsEK ′+′−′+ λ),,(3),(2  

∫
′

′′′′′′′=′
E

E

s EEKEEdsEEK ),,(),,,(1 λλ , 

∫
′

′′′′′′=′
E

EdEEeWsEsEK
0

),(),(2 , 

∫ ′′′′′′−′′=′
1

),(),,(3

E

E
EdsEEEEeWsEEK .   (7) 
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Получим явное выражение для функции ),,,( sEE λϕ ′ , используя 
приближенные выражения для  и  eW pW

E
EdEdEEeW
′
′

=′′),(  

E
dEdEEEpW
′

=′ 0),( σ , где 073,00 =σ  

После вычисления интегралов 
{ }),,(),(),,,( sxfsxssEsEE λλψλϕ +−−=′ , где 

[ ][ ]
0

)(2)(1),(
σλ

λλλλ
λψ

+

−−
=

ss
s    (8) 

)(1 sλ , )(2 sλ , ,  - функции каскадной теории )(sB )(sC

−−−
+

= )1()()(),,(
0

sxssCsBsxf
σλ

λ  

);2;1,1(121
xssF

s
x

++
+

− , 
E
Ex
′

= , 

 
);2;1,1(12 xssF ++  - гипергеометрическая функция. Функция 

),,( sxf λ  медленно меняется с изменением  в интервале . 
Чтобы функция  также слабо менялась с изменением 

, необходимо положить 

x 9,00 ≤≤ x
sEsEE ),,,( λϕ ′

s )(1 sλλ =  или )(2 sλλ = . 
Теперь соотношение (7) можно переписать: 

=∫ ′′′
0

)],,,0([
E

E
EdksEEpDLsE  

),,,0(),,( ksEENDksEqsE= , 

∫ ′′=
0

),,,0(),,,0(
E

E
EdksEEpDksEEND , 

=),,( ksEq  

∫ ′⎟
⎠
⎞

⎜
⎝
⎛

′′∂

′∂

′
=

0
,

),,,0(

),,,0(
1

E

E
Eds

E
Ef

E

ksEEND

ksEEND
.  (9) 

В соотношении (9)  и s λ  связаны соотношением )(1 sλλ = . В первом 
приближении предполагают )(),,( 0 sqksEq = . Тогда, 
продифференцировав (9) по E  и разделив полученное равенство на 

sE , получим приближенное выражение оператора L ,  
 15



 
описывающего процессы радиационного торможения и образования 
пар 

+
∂

∂
=

E

kEEND
sqkEEpDL

),,,0(
)()],,,0([

λ
λ  

),,,0()( kEEND
E

ssq λ+ .    (10) 

В этом случае уравнение для  записывается в виде  ND
 

π

δ

2

)0(
),,,0()(

24

22
)(

EE
ksEEND

E
ssq

E
ND

E

kkE
sq

−
=+

∂

∂

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+  (11) 

Здесь q(s) выражается через известные функции каскадной теории 
 

)(1

)(1)(
sH

ss
sq

λ′
−=  

Решение уравнения (7) имеет вид 
 

×+−+= 2/1)4/222
0(

2

2
0),,,0( sqkkEE
q

E
ksEEND

π
 

2/)4/222( sqkkEE −+×  при 0EE <    (12) 

при  оно равно нулю. 0EE ≥
Упражнение 1. Используя трансформанты Ханкеля 

 получить функции ),,,( 0 ksEEDN ),,,( 0 θsEEN p , когда . EE >>0

Упражнение 2. Получить трансформанту Ханкеля 
 для произвольных граничных условий и 

произвольного вида функций источника: 
),,,( 0 ksEEDN

),(24

2
],[ tEpsP

E
kE

PL
t
P

+∆+Γ=
∂
∂

θ , 

),(],[2 tEsPL
t Γ+Γ=
∂
Γ∂ , 

),,0()0,,,0( θϕθ EEptEEP == , 

)0,,0()0,,,0( EEtEE Γ==Γ ϕθ . 

 

 16



 
Упражнение 3. Получить ),,,( 0 θsEEDN  для случая 

граничных условий 0)0,,,( 0 =Γ θEE ,  
 

)0()0()0()0,,,0( yyxxEEEEP θθδθθδδθ −−−= , 

соответствующих одному первичному электрону, падающему на 

границу под углом 2
0

2
00 yx θθθ += . 

Указание: Использовать преобразование Фурье 
 

=∫
∞+

∞−
∫

+i

i
yxfykyxkxi

eydxd ),(
)(

2
1 θθ

θθ
θθ

π
 

),( ykxkΦ=  

 
 

=∫
∞+

∞−
∫ Φ

+i

i
ykxkykyxkxi

eydkxdk ),(
)(

2
1 θθ

π
 

),( yxf θθ=  
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